

Documento

Evaluación Regional del Agua-ERA

Cuenca Alto Lebrija

Corporación Autonoma Regional para la Defensa de la Meseta de Bucaramanga C D M B 2019

EVALUACIÓN REGIONAL DEL AGUA- ERA

Cuenca Alto Lebrija

Corporación Autónoma Regional para la Defensa de la Meseta de Bucaramanga

CDMB

Documento

	Olga Johanna Sanabria Suescun	
Elaboración	Química-Especialista Ingeniería Ambiental	Abril/2019
Elaboración	Carlos Mauricio Torres Galvis	ADIII/2019
	Ingeniero Civil	
	Plan de Ordenamiento y Manejo de la	
Soporte	Cuenca Alto Lebrija-POMCA 2015	
	Lineamientos Conceptuales y Metodológicos para la Evaluación regional del agua –ERA 2013	
	Estudio Nacional del Agua-ENA 2010	
	Política Nacional para la Gestión Integral del Recurso Hídrico 2010	
	Decreto N°1640 de agosto de 2012	
	María Carmenza Vicini Martínez	
Revisión	Coordinadora Gestión del Conocimiento e Investigación Ambiental	Abril/20 19
	Nelson Andrés Mantilla Oliveros	ADIII/2019
	Subdirector Ordenamiento y Planificación Integral del Territorio-SOPIT	
	Nelson Andrés Mantilla Oliveros	
Aprobación	Subdirector Ordenamiento y Planificación Integral del Territorio-SOPIT	Abril/20 19
Dirección	Dr. Martin Camilo Carvajal Camaro	
	Director General CDMB	

Tabla de Contenido

INTRODUCCIÓN	6
MARCO GENERAL DE LA EVALUACIÓN REGIONAL DEL AGUA-ERA, CUEN ALTO LEBRIJA	
CAPITULO 1. CONTEXTO GENERAL	8
1.1 Propósito del Evaluación Regional del Agua-ERA, Cuenca Alto Lebrija	8
1.1.1 Objetivo general	8
1.1.2 Objetivos específicos	8
1.2 Justificación	9
1.3 Marco de contextual	9
1.3.1 Política Nacional de Gestión Integral del Recurso Hídrico (PNGIRH-2010-2022)	9
1.3.2 Estudio Nacional del Agua (ENA) 2010	. 10
1.3.3 Gestión Integral del Recurso Hídrico (GIRH)	. 10
1.3.4 Sistema de Información del Recurso Hídrico (SIRH)	. 11
1.3.5 Planificación, ordenamiento Territorial Ambiental y del Territorio	. 12
1.3.6 Lineamiento Conceptuales y Metodologicos para la Evaluación Region del Agua –ERA 2013	
CAPITULO 2. MARCO CONCEPTUAL	. 15
2.1 Ciclo del Agua ERA Y ENA	. 15
2.2 Sistema de Indicadores	
Hídricos	. 17
CAPÍTULO 3. MARCO METODOLÓGICO PARA LA ERA CUENCA ALTO LEBRIJA	. 21
3.1 Procedimiento general para la evaluación del agua en la Cuenca Alto Leb	•
3.2 Instrumentos	
3.2.1 Instrumentos técnicos	
3.2.2 Instrumentos de planificación ERA 2013	
3.2.3 Instrumentos económicos	
CAPITULO 4. INFORMACIÓN GENERAL DE LA CUENCA DEL ALTO LEBRIJA	
4.1 Localización de la cuenca en estudio	. 25

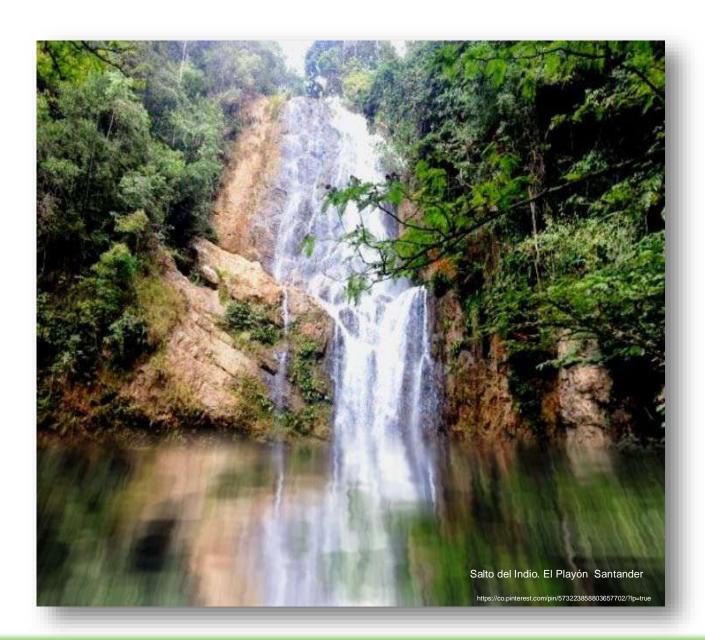
4.2 División Hidrológica de la Cuenca, Nivel I Alto Lebrija	28
4.2.1 Subcuenca- Nivel II Lebrija Alto, 2319-01-01	29
4.2.2 Subcuenca - Nivel II Rio de Oro, 2319-01-02	29
4.2.3 Subcuenca - Nivel II Rio Surata - 2319-01-03	30
4.2.4 Subcuenca - Nivel II Rio Negro - 2319-01-04	30
4.2.5 Subcuenca - Nivel II Salamaga - 2319-01-05	31
4.3 Distribución Pendientes cuenca Alto Lebrija-Nivel I	32
4.4 Red estaciones Hidrometereológicas	33
CAPITULO 5. AGUA SUPERFICIAL	38
5.1 Conceptos básicos	38
5.1.1 Oferta hídrica superficial	38
5.1.2 Oferta Hídrica Disponible (OHTD) (IDEAM, 2010 a, c.p. IDE 2013)	
5.1.3 Oferta hídrica regional disponible (OHRD)	38
5.1.4 Oferta Hídrica Regional aprovechable (OHRA)	39
5.1.5 Caudal medido en la estacion (Qest)	39
5.1.6 Caudal Ambiental	39
5.1.7 Año hidrológico medio y húmedo	40
5.1.8 Año hidrológico seco	40
5.1.9 Caudal de retorno	40
5.1.10 Caudal extracción y caudal de transvase	40
5.1.11 Balance hídrico	40
5.1.12 Precipitación	42
5.1.13 Escorrentía	42
5.1.14 Evapotranspiración real (ETR)	43
5.1.15 Evapotranspiración potencial (ETP)	44
5.1.16 Almacenamiento	45
5.1.17 Área de la cuenca	45
5.1.18 Perímetro de la cuenca	45
5.1.19 Longitud del cauce principal	46
5.1.20 Longitud axial de la cuenca	46
5.1.21 Vulnerabilidad hídrica	46
5.1.22 Demanda hídrica (Dh)	46
5.1.22.1 Consumo humano o doméstico (DUD)	47
5.1.22.2 Consumo en sector agrícola (DUA)	48

	5.1.22.3 Consumo pecuario (DUP)	48
	5.1.22.4 Consumo industrial (DUI)	49
	5.2.1 Índice de aridez (la)	49
5	.2.2 Índice de retención y regulación hídrica (IRH)	51
5	.2.3 Índice de uso del agua (IUA)	52
5	.2.4 Índice de vulnerabilidad por desabastecimiento hídrico (IVH)	53
5	.2.5 Índice de Calidad del Agua – ICA	54
5	.2.6 Índice de Alteración "Potencial de la Calidad del Agua – IACAL	55
5	.3 Marco metodológico	56
	5.3.1 Procedimiento para la evaluación y caracterización de la oferta hídrica superficial y su disponibilidad	
	5.3.1.1 Cuenca intervenida	57
	5.3.1.2 Cuenca no intervenida o poco intervenida	57
	5.3.1.3 Oferta hídrica total superficial (OHTS)	.58
CAI	PÍTULO SEIS	61
6. /	ANÁLISIS Y RESULTADOS	61
	.1 Características morfométrícas y fisiográficas de las subcuencas Nivel II de nidades hidrográficas que componen la Cuenca Alto Lebrija	
6	.2 Precipitación	62
	6.2.1 Selección de estaciones	62
	6.2.2 Complementación de series	63
	6.2.2.1 Método de correlación	65
	6.2.2.2 Análisis de consistencia	65
	6.2.2.3 Resumen de precipitación media mensual	65
	6.2.2.4 Resumen de precipitación mínima	68
	6.2.2.5 Resumen de precipitación máxima	70
	6.2.2.6 Precipitación máxima en 24 horas	73
	6.2.2.7 Análisis de frecuencia precipitación máxima en 24 horas	75
	6.2.2.8 Curvas sintéticas de intensidad, duración y frecuencia IDF	78
	6.2.2.9 Distribución espacial	. 80
6	.3 Temperatura	84
	6.3.1 Temperatura media mensual multianual	85
	6.3.2 Temperatura mínima mensual multianual	87
	6.3.3 Temperatura máxima mensual multianual	89
6	.4 Humedad relativa	95

6.4.1 Distribución temporal	95
6.4.2 Distribución espacial	97
6.5 Evaporación	99
6.5.1 Distribución temporal	100
6.5.2 Distribución espacial	101
6.6 Brillo solar	103
6.6.1 Distribución temporal	103
6.6.2 Distribución espacial	105
6.7 Evapotranspiración	108
6.7.1 Evapotranspiración potencial (ETP)	108
6.7.2 Evapotranspiración real (ETR)	113
6.8 Balance hídrico	117
6.8.1 Balance hídrico de largo plazo	123
6.9 Determinación de los tipos de oferta	125
6.9.1 Oferta hídrica total superficial (OHTS)	125
6.9.1.1 Caudal ambiental	127
6.9.1.2 Oferta hídrica total disponible (OHDT)	128
6.9.1.3 Rendimiento hídrico	130
CAPITULO 7 INDICADORES	136
7.1 Demanda hídrica	
7.2 Índice de aridez	138
7.3 Índice de retención y regulación hídrica (IRH)	142
7.4 Uso del agua superficial (IUA)	179
7.5 Índice de vulnerabilidad por desabastecimiento hídrico (IVH)	182
7.6 Índice de susceptibilidad por eventos torrenciales (IVET)	184
7.9 Índice de vulnerabilidad a eventos torrenciales (IVET)	190
7.10 Índice de alteración potencial de la calidad de agua (IACAL)	192
7.10.1 Análisis del índice de alteración potencial de la calidad de agua	
(IACAL)	
7.10.2 IACAL año medio	
7.11 Índice de calidad de agua (ICA)	
7.11.2 Índice de calidad promedio	
CAPITULO 8. ANÁLISIS INTEGRAL DE LA CUENCA ALTO LEBRIJA	
CAPITULO 9. CONCLUSIONES	
9.1 Acciones	217

BIBLIOGRAFIA	219
LISTADO DE TABLAS	220
LISTADO DE GRÁFICAS	223
LISTADO DE FIGURAS	225

INTRODUCCIÓN


La Corporación Autónoma Regional para la Defensa de la Meseta de Bucaramanga - CDMB, adoptó las Evaluaciones Regionales del Agua – ERA, reglamentadas en el artículo 8° del Decreto N°1640 de agosto de 2012; con el fin de determinar la situación actual de la oferta, demanda, calidad y análisis de riesgos vinculados a la dinámica del agua y de esta forma avanzar en el conocimiento de las cuencas hidrográficas de la jurisdicción. La ERA integra los temas definidos en la Política Nacional para la Gestión Integrada del Recurso Hídrico – 2010 y se siguen los lineamientos conceptuales y metodológicos contenidos en el Estudio Nacional del Agua (ENA) 2010 y la Evaluación Regional del Agua (ERA) 2013 apuntando al cumplimiento de los objetivos de la Política Nacional del Recurso Hídrico entre los que se destacan, evaluar las microcuencas Nivel III que surten los acueductos municipales, las condiciones de calidad de las fuentes, la cantidad de agua en periodos de tiempos normales, húmedos y secos, y las amenazas y los riesgos asociadas al recurso hídrico.

En el presente documento se encuentran los resultados de la Evaluación Regional del Agua (ERA) para la **CUENCA ALTO LEBRIJA**, jurisdicción de la CDMB, en el cual se actualiza el estado, dinámica y tendencias del sistema hídrico en esta cuenca, producto de los procesos naturales y antrópicos para ejercer una adecuada administración en el uso y manejo sostenible del recurso hídrico.

Este documento se construyó con información actualizada de la CDMB en el POMCA Alto Lebrija, y contribuye aportando información y conocimiento sobre la oferta, la demanda, la calidad, el riesgo, las respuestas hidrológicas a la variabilidad climática. Así mismo, determina indicadores que dan cuenta de las presiones por uso, afectaciones y criticidad del sistema hídrico. En conclusión, esta evaluación en la Cuenca Alto Lebrija, servirá de guía para la ejecución de las evaluaciones en las otras cuencas que pertenecen al área de jurisdicción de la CDMB.

MARCO GENERAL DE LA EVALUACIÓN REGIONAL DEL AGUA -ERA CUENCA ALTO LEBRIJA

SECCIÓN A

CAPITULO 1. CONTEXTO GENERAL

En este capítulo de presenta el objetivo, justificación y entorno en el cual se va a realizar la evaluación, y el escenario para su aplicación.

1.1 Propósito del Evaluación Regional del Agua- ERA, Cuenca Alto Lebrija

1.1.1 Objetivo general

Valorar el estado del sistema hídrico en la cuenca Alto Lebrija, como consecuencia de los procesos naturales y antrópicos para una apropiada administración, uso y manejo sostenible del agua en la región.

1.1.2 Objetivos específicos

- Determinar y evaluar la oferta hídrica superficial con sus respectivos indicadores hídricos, para la toma de decisiones.
- Evaluar la demanda hídrica superficial.
- Determinar la calidad hídrica superficial, basada en el Índice de Calidad del Agua (ICA), y el Índice de Alteración Potencial de la Calidad del Agua (IACAL) en la cuenca Alto Lebrija.
- Realizar el balance hídrico de la Cuenca Alto Lebrija.
- Evaluar las amenazas y vulnerabilidad asociados al recurso hídrico en la Cuenca Alto Lebrija teniendo en cuenta los Índices de régimen natural como el Índice de Aridez (IA), Índice de Regulación Hídrica (IRH) y los de intervención antrópica como el Índice de Uso del Agua (IUA) y el Índice de Vulnerabilidad Hídrica al desabastecimiento (IVH).

1.2 Justificación

La Corporación Autónoma Regional para la Defensa de la Meseta de Bucaramanga - CDMB, como Entidad Ambiental, a partir de la Ley 99 de 1993 es la encargada de administrar dentro del área de su jurisdicción, el medio ambiente, los recursos naturales renovables y propender por su desarrollo sostenible, razón por la cual en cumplimiento del Decreto 1640, art. 8. realizó la Evaluación Regional del Agua-ERA Cuenca Alto Lebrija que contiene el análisis de la oferta, demanda, disponibilidad, uso, calidad y vulnerabilidad del recurso hídrico teniendo en cuenta la variación climática y las posibles condiciones de cambio climático.

La Evaluación Regional del Agua – ERA, Cuenca Alto Lebrija, se constituye como el fundamento técnico para tomar decisiones acertadas con respecto al recurso hídrico, que refleja el escenario actual y las tendencias en el estado y comportamiento del agua en la región.

En su desarrollo se analizaron y evaluaron los datos, generando la información necesaria para una adecuada Gestión Integral Recurso Hídrico. Adicionalmente, la información sirve de apoyo en la aplicación de instrumentos económicos y en la elaboración y seguimiento de los planes ambientales y de gestión.

1.3 Marco de contextual

1.3.1 Política Nacional de Gestión Integral del Recurso Hídrico (PNGIRH-2010-2022)

En la Política Nacional para la Gestión Integral del Recurso Hídrico se han definido estrategias y directrices que definen hacia donde se deben direccionar las acciones de cada una de las instituciones y de los usuarios que forman parte de la gestión integral del recurso hídrico.

Esta política fue proyectada como un instrumento orientador de la gestión integral del recurso hídrico, para establecer los objetivos y estrategias en el uso y aprovechamiento eficiente del agua, el manejo del recurso por parte de las autoridades y usuarios, y la prevención de la contaminación hídrica, teniendo en cuenta el equilibrio en los aspectos sociales, económicos y ambientales.

1.3.2 Estudio Nacional del Agua (ENA) 2010

El Estudio Nacional del Agua (ENA 2010), presenta el balance hídrico y las relaciones de demanda-oferta en Colombia e indicadores de sostenibilidad proyectados para el periodo 2010-2022. Este documento maneja el concepto de integralidad y apunta en forma general a los ciclos y procesos de la naturaleza, reconociendo al agua como elemento indispensable y definitivo en la dinámica de los procesos sociales y productivos. Además, proporciona elementos importantes sobre el uso del recurso y se evidencia la necesidad de avanzar en la obtención de información y el conocimiento regional, para planificar y gestionar el recurso hídrico.

Acorde al avance del ENA, 2018, el conocimiento de la distribución, estado, dinámica y presiones sobre los sistemas hídricos en cantidad y calidad, constituyen el soporte para la planificación del territorio y la toma de decisiones para determinar la funcionalidad e integralidad en los servicios ecosistémicos sus potencialidades y restricciones para efectos de aprovechamiento energético, seguridad alimentaria, abastecimiento y uso sectorial.

1.3.3 Gestión Integral del Recurso Hídrico (GIRH)

La GIRH, es un proceso sistemático para el desarrollo y aprovechamiento ordenado entre los recursos hídricos, la tierra y los recursos naturales; donde los recursos hídricos son limitados y sus usos son independientes. Por lo tanto, se define como "un proceso que promueve la gestión y desarrollo coordinado del agua, la tierra y los recursos relacionados, con el fin de maximizar el bienestar social y económico resultante de manera equitativa, sin comprometer la sostenibilidad de los ecosistemas".

La Gestión Integral del Recurso Hídrico es un medio que permite cumplir con 3 objetivos estratégicos:

- a- Eficiencia para lograr una mayor durabilidad de los recursos hídricos.
- b- Equidad en la disposición del recurso agua entre los diferentes grupos socioeconómicos.
- c- Sostenibilidad ambiental, para proteger los recursos hídricos y los ecosistemas conexos.

1.3.4 Sistema de Información del Recurso Hídrico (SIRH)

De acuerdo al Decreto 1323 de 2007 del IDEAM, el Sistema de Información del Recurso Hídrico –SIRH, es el conjunto de elementos que integra y estandariza el acopio, registro, bases de datos, manejo, consulta, estadísticas, sistemas, modelos, información documental y bibliográfica, reglamentos y protocolos que facilitan la gestión integral del recurso.

El SIRH gestiona conocimiento respecto al estado, comportamiento y la dinámica del ciclo hidrológico en las unidades de interés hidrológico, teniendo en cuenta la Política Nacional para la Gestión Integral del Recurso Hídrico – PNGIRH.

Actualmente el SIRH cuenta con información relacionada con la oferta, demanda, calidad, riesgo y gestión del recurso hídrico, la cual es procesada y consolidada, gracias al trabajo articulado que se viene adelantando con el IDEAM y las 42 autoridades ambientales competentes, que desde el año 2012 han realizado un esfuerzo conjunto para reportar y poner a disposición, la información de los usuarios y monitoreo de calidad realizada a los cuerpos de agua en el área de su jurisdicción.

1.3.5 Planificación, ordenamiento Territorial Ambiental y del Territorio

El territorio nacional cuenta con cinco áreas hidrográficas que contemplan, 41 zonas y 309 subzonas. La Corporación Autónoma Regional para la Defensa de la Meseta de Bucaramanga, tiene a su cargo la planificación en las subzonas que pertenecen a su jurisdicción, con base en la PNGIRH que determina los niveles para planificación, ordenamiento y manejo del agua en Colombia. (ver Figura 1.)

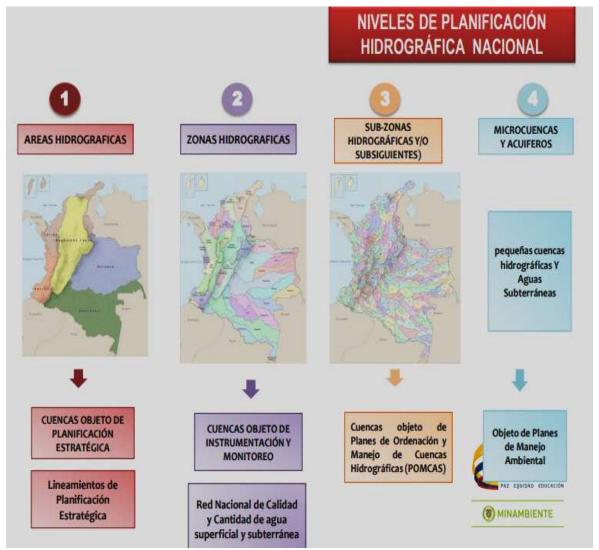
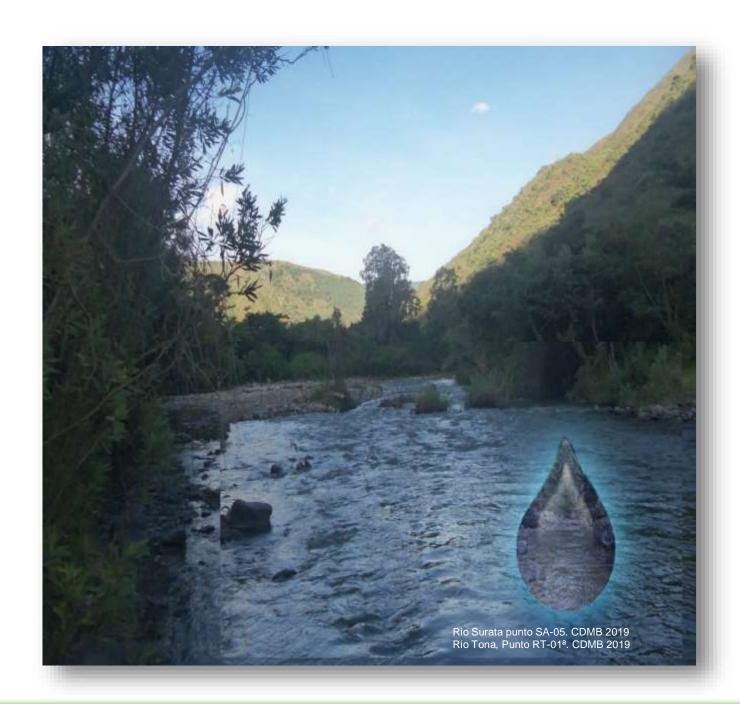


Figura 1. Niveles de planificación hidrográfica nacional MADVT, 2010.

1.3.6 Evaluación Regional del Agua –ERA


Es un instrumento articulador orientado a generar información en forma ordenada para apoyar la planificación, gestión y aplicación de los otros instrumentos. Es importante mencionar que la información de oferta, demanda, calidad y riesgos, son partes primordiales en la gestión de las autoridades ambientales y es necesario que la información esté disponible y constituya parte de los sistemas de información y de difusión de dichas entidades.

La evaluación regional se apoya en el análisis general de la situación actual y las tendencias del recurso hídrico, vinculada a la oferta, demanda, calidad, cantidad, amenaza y vulnerabilidad del agua. Esta actividad se expresa por medio de indicadores hídricos regionales, prácticos y adecuados para la toma de decisiones.

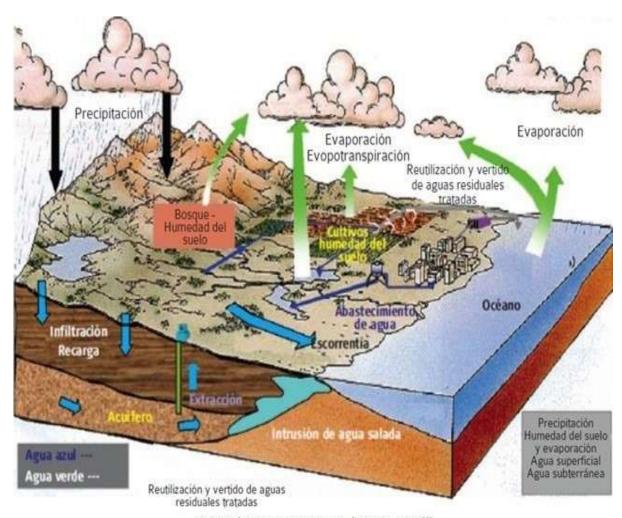
De igual modo, las evaluaciones regionales del agua deben cumplir las necesidades de información y conocimiento para acatar la normatividad vigente, en las leyes, decretos, resoluciones nacionales, regionales y acuerdos.

Se espera que los productos técnicos generados a partir de las evaluaciones regionales del agua, sean apropiados para el cumplimiento de las funciones de las autoridades ambientales, el fortalecimiento del Sistema de Información Ambiental para Colombia-SIAC, aplicación de normas técnicas para administrar, controlar y hacer seguimiento de la hidrología y recurso hídrico en la jurisdicción de la autoridad ambiental, la ordenación de cuencas (POMCAs), la planificación y ordenamiento del uso del recurso (reglamentación de corrientes; concesiones y permisos de vertimiento), así como en instrumentos asociados al ordenamiento forestal, manejo de páramos, humedales, áreas protegidas, zonas secas, manglares, sistemas acuíferos, aguas marinas y costeras y la aplicación de instrumentos económicos como tasas por uso y tasas retributivas.

SECCIÓN B

CAPITULO 2. MARCO CONCEPTUAL

2.1 Ciclo del Agua ERA Y ENA


El ciclo hidrológico y su balance de agua global constituyen el modelo básico para comprender el funcionamiento del sistema hídrico y las interacciones entre el océano y el continente (IDEAM 1998). Está regido por procesos naturales continuos pero irregulares en el espacio/tiempo y representa la circulación y transformación del agua en sus diversos estados en la esfera terrestre. Su dinámica es determinada por las condiciones de radiación solar, acción de la gravedad y las interacciones de las capas superiores de la tierra: atmósfera, litosfera y biosfera.

Teniendo en cuenta estas condiciones, el agua cae sobre la superficie terrestre en forma líquida o sólida; el proceso de evaporación inicia desde la superficie del océano y a medida que se eleva, el aire humedecido se enfría y el vapor se transforma en agua por condensación. Las gotas se agrupan y forman nubes que posteriormente caen por precipitación. Si la temperatura en la atmósfera es muy baja, el agua desciende como nieve o granizo; si es cálida, cae como gotas de lluvia. (ver Figura 2.)

Una parte del agua que llega a la superficie terrestre será aprovechada por los seres vivos; otra circula por el terreno hasta llegar a ríos, lagos u océano, fenómeno conocido como escorrentía. Otro porcentaje del agua se filtrará a través del suelo formando acuíferos o capas de agua subterránea, llamada capa freática, proceso denominado infiltración.

El agua puede brotar en la superficie desde la capa freática, en forma de fuente formando arroyos o ríos. Tarde o temprano, toda esta agua volverá nuevamente a la atmósfera, debido principalmente a la evaporación. Una gota de lluvia puede recorrer todo el ciclo o una parte de él.

Fuente: (UNESCO, 2006 a, c.p. (IDEAM, 2013)))

Figura 2. Ciclo Hidrológico- Unesco 2006.

La acción del hombre altera la dinámica de los procesos naturales y la distribución espacial y temporal de la cantidad de agua superficial; en consecuencia, trastorna el balance hídrico en las unidades hidrográficas que integran una región.

La evaluación regional del Agua, Cuenca Alto Lebrija, se sustenta en el marco conceptual y el análisis general del estado actual y las tendencias del comportamiento de la oferta hídrica, demanda de agua, calidad de agua, amenaza y vulnerabilidad de las fuentes hídricas en la región. Esta dinámica se expresa con

un sistema de indicadores hídricos regionales relacionados con la funcionalidad del sistema, realizables y apropiados para la toma de decisiones.

2.2 Sistema de Indicadores Hídricos

En términos generales, un indicador es la medida cuantitativa o la observación cualitativa que permite identificar cambios en el tiempo y cuyo propósito es determinar el funcionamiento de un sistema, alertando sobre la existencia de un problema, para permitir la toma de decisiones o medidas para solucionarlo, una vez se tenga claridad sobre las causas que lo generaron (Organización para la Cooperación y el Desarrollo Económico-OCDE, 2001).

De acuerdo al ENA 2010, los indicadores que sintetizan las características del régimen hidrológico son el Índice de Aridez (Ia) y el Índice de Retención y Regulación Hídrica (IRH). Por otra parte, los factores climáticos e hidrológicos, incorporan la interacción con las actividades antrópicas corresponden a:

- Índice de Uso del Agua (IUA)
- Índice de Vulnerabilidad al Desabastecimiento (IVH)
- Índice de Calidad del Agua (ICA)
- Índice de Alteración Potencial de la Calidad (IACAL).

Además, el soporte básico para el sistema de indicadores es el sistema de información del recurso hídrico, SIRH.

Con el fin de evaluar el estado en cuanto a la cantidad y calidad del agua en Colombia, se desarrolló el "Sistema de Indicadores Hídricos" (ver Tabla 1.), sencillos y de fácil interpretación, que pretenden responder a los cuestionamientos sobre la disponibilidad del recurso y las restricciones por afectaciones a la oferta o a la calidad.

Los índices están asociados al régimen natural y a la intervención antrópica; se encuentran definidos en el orden nacional y se conservan a nivel regional (ver Tabla 1), con los ajustes metodológicos para llevarlos a la resolución pertinente y escalas mayores (IDEAM, ENA 2010).

Indicadores Hídricos						
Régimen Natural Intervención Antrópica						
Índice de Aridez	IA	Índice de Uso del Agua	IUA			
Índice de Regulación Hídrica IRH Índice de Vulnerabilidad al desabastecimiento IVI						
		Índice de Amenaza potencial por Afectación a la Calidad del Agua	IACAL			
Índice de Calidad del Agua						

Tabla 1. Indicadores hídricos, ENA 2010

El conjunto de indicadores debe abordar el tema del agua en forma integral y está integrado por los seis índices definidos en el ENA 2010 y seis índices que complementan la evaluación en los temas de agua subterránea, condiciones de calidad, amenaza y vulnerabilidad de los sistemas hídricos y del recurso por variabilidad climática y contaminación (ver figura 3).

Este sistema de indicadores hídricos muestran el estado y dinámica del agua, las presiones, efectos en la disponibilidad de la variabilidad hidrológica y deben aplicarse a cada unidad de análisis definida por la autoridad ambiental (ERA, 2013).

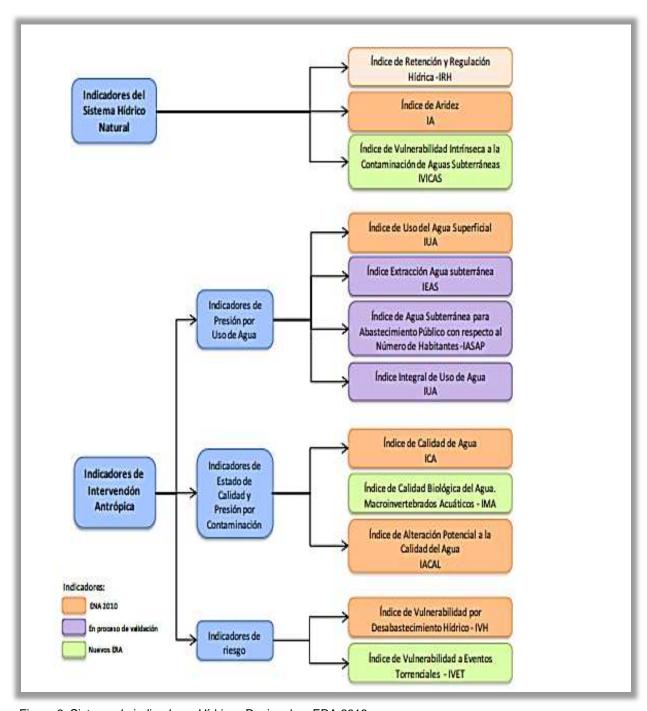


Figura 3. Sistema de indicadores Hídricos Regionales. ERA-2013

SECCIÓN C

CAPÍTULO 3. MARCO METODOLÓGICO PARA LA EVALUACIÓN DEL AGUA-CUENCA ALTO LEBRIJA

Este capítulo relaciona con los elementos metodológicos como el procedimiento general, instrumentos y sistemas de información y estadísticos de soporte.

3.1 Procedimiento general para la evaluación del agua en la Cuenca Alto Lebrija

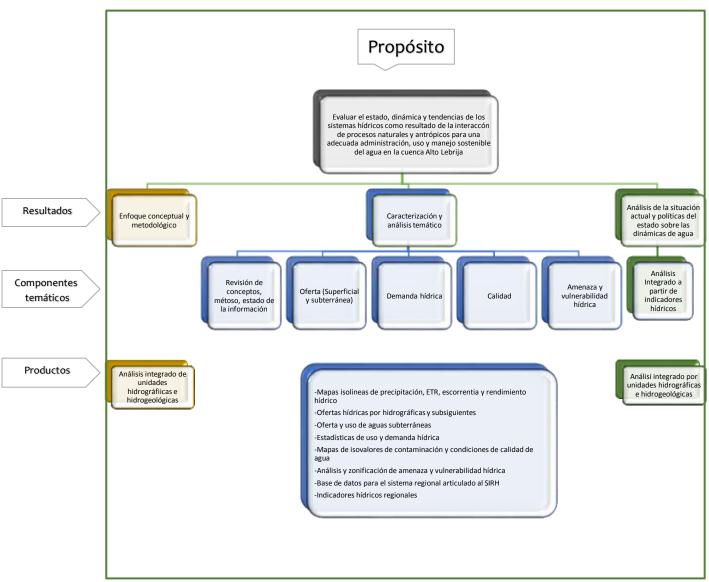


Figura 4. Marco metodológico para la evaluación del agua ERA.

3.2 Instrumentos

Las ERA están influenciados por instrumentos que pueden ser técnicos, de planificación, y económicos.

3.2.1 Instrumentos técnicos

Entre los instrumentos útiles en el proceso de elaboración de las Evaluaciones regionales del agua se encuentran:

- a. Programa de Monitoreo del Recurso Hídrico en el área de jurisdicción de la CDMB.
- b. Registro de usuarios del recurso hídrico. Es un instrumento diseñado para consolidar la información de concesiones de agua y permisos de vertimiento.
- c. Guías para la Gestión Integrada del Recurso Hídrico. Incluye la guía para el Ordenación y Manejo de Cuencas Hidrográficas, guía para los planes de ordenación del recurso hídrico-PORH, guía Nacional de Modelación del Recurso Hídrico, guía para la elaboración de planes de manejo ambiental de acuíferos, y la guía para la elaboración de planes de manejo de microcuencas Nivel III.

d. Normatividad legal.

Decreto N°1640 de agosto de 2012 del MADS, Decreto 1323 de 2007 del IDEAM, Decreto 1076 de 2015 del MADS, (Capítulo 5 sección 1, artículo 2.2.3.5.1.2, Sistema de Información del Recurso Hídrico –SIRH), Acuerdo de Consejo Directivo CDMB N° 1339 de 2017, Estudio Nacional del Agua (ENA) 2010 del MADS, Lineamientos y Conceptuales y Metodológicos para la Evaluación Regional del Agua-ERA 2013 del IDEAM, Política Nacional de Gestión Integral del Recurso Hídrico, 2010-2022

3.2.2 Instrumentos de planificación ERA 2013

Las ERA deben constituirse en insumos técnicos para los Planes de Ordenación y Manejo de Cuencas-POMCA para las subzonas hidrográficas, planes de manejo ambiental para cuencas de orden inferior a subzonas hidrográficas o subsiguientes y Planes de Manejo Ambiental de Acuíferos.

Asimismo, se deben relacionar los planes de acción de las Autoridades Ambientales, como el Plan de Gestión Ambiental Regional (PGAR), Plan de Acción Trienal- PAT y Plan Operativo Anual POA. De igual forma, los planes de las entidades territoriales en los que tienen intervención las autoridades ambientales como los planes de Ordenamiento Territorial (Ley 388, 1997), saneamiento y manejo de vertimientos municipales-PSMV, ahorro y uso eficiente del agua (Ley 373, 1997), entre otros.

3.2.3 Instrumentos económicos

Los instrumentos económicos más importantes para las Evaluaciones Regionales del Agua ya que procuran apoyar la regulación del uso y las condiciones de calidad del agua son la tasa retributiva y la tasa por utilización de agua, consignadas en la Ley 99 de 1993, artículos 43 y 42 respectivamente.

SECCIÓN D

CAPITULO 4. INFORMACIÓN GENERAL DE LA CUENCA DEL ALTO LEBRIJA

4.1 Localización de la cuenca en estudio

Geográficamente la cuenca del rio Alto Lebrija, se localiza en la parte nororiental del departamento de Santander, ocupando parcialmente los municipios de El Playón, Rionegro, Matanza, Suratá, California, Vetas, Charta, Tona, Bucaramanga, Floridablanca, Piedecuesta, Girón y Lebrija.

Esta Cuenca Nivel I pertenece a la Subzona Hidrográfica Río Lebrija y otros directos al Magdalena Jurisdicción de la Corporación Autónoma Regional para la defensa de la Meseta de Bucaramanga (CDMB), código 2319-01, con una extensión total de 217.334 hectáreas y un perímetro de 159.72 Km, con coordenadas aproximadas X:1.109.000/1.114.000; 1.260.000/1.320.000. En la Figura 5, se observa la localización de la Cuenca Alto Lebrija, respecto a Colombia y al departamento del Santander.

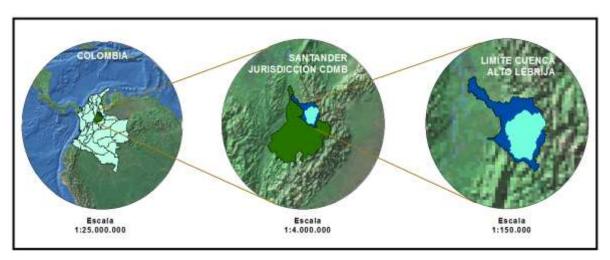


Figura 5. Localización Cuenca Alto Lebrija. Fuente: Unión Temporal POMCA Río Lebrija Alto 2015.

Se encuentra ubicada a una altura media de 1.595 msnm con máximos de 4.200 msnm localizados al oriente de la cuenca y alturas mínimas a 150 msnm en la zona central en el valle del río de Oro. La cuenca Alto Lebrija está conformada por cinco

(5) subcuencas Nivel II que se sitúan parcialmente en los trece (13) municipios del Departamento de Santander: Piedecuesta, Girón, Tona, Floridablanca, Bucaramanga, Surata, Rionegro, El Playón, Matanza, Lebrija, Vetas, California, Charta. (ver Figuras 6. y 7.)

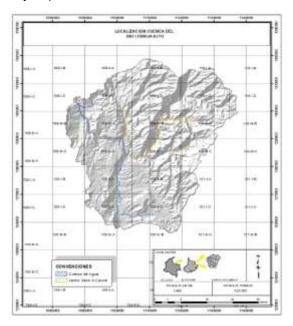


Figura 6. Ubicación de la Cuenca Nivel I Alto Lebrija. Tomado de http://www.cdmb.gov.co/web/consejo-de-cuenca-pomcas

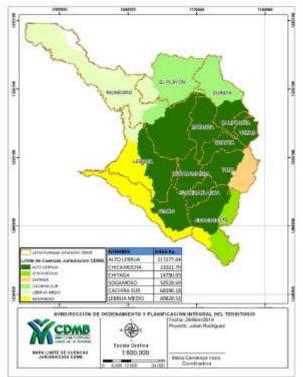


Figura 7. Municipios que conforman la cuenca Nivel I Alto Lebrija. Mapa CDMB

Las áreas de los municipios que abarca la cuenca se hallan discriminadas en la Gráfica 1.

Gráfica 1. Área (Ha) municipios en la cuenca Alto Lebrija. Fuente datos: Consultoría POMCA Alto Lebrija 2015

El porcentaje la participación de los municipios (ver Figura 2), del área de jurisdicción de la CDMB es la siguiente:

Gráfica 2. Porcentaje de participación de los municipios en la cuenca Alto Lebrija.

4.2 División Hidrológica de la Cuenca, Nivel I Alto Lebrija

La cuenca Alto Lebrija- Nivel I código 2319-01, localizada en área de Jurisdicción de la Corporación Autónoma Regional Para la Defensa de la Meseta de Bucaramanga CDMB, a nivel hidrológico se subdivide en cinco (5) subcuencas - Nivel II (ver Tabla 2.), formando parte de la Cuenca del Río Lebrija y otros directos al rio Magdalena.

SUBCUENCA	CODIGO	AREA (Km2)	PERIMETRO (Km
Lebrija Alto	2319-01-01	438.47	159.72
Rio Oro	2319-01-02	572.74	117.24
Rio Surata	2319-01-03	691.26	137.12
Río Negro	2319-01-04	251.78	80.22
Río Salamaga	2319-01-05	218.04	91.75

Tabla 2. Subcuencas- Nivel II de unidades hidrográficas

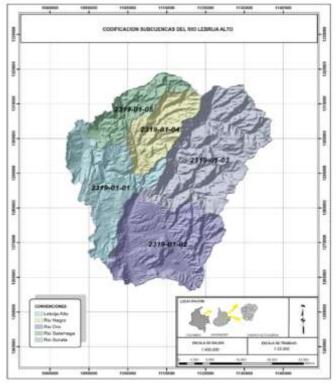


Figura 8. Mapa de hidrografía (subcuencas-Nivel II) POMCA Cuenca Alto Lebrija.

La región natural de la Cuenca Lebrija Alto, esta administrativamente compartida por los municipios de Girón, Lebrija (microcuenca Nivel III Angula- Lajas), Bucaramanga (microcuenca Nivel III Aburrido), y el municipio de Rionegro (microcuenca Nivel III la Honda). Su división política está compuesta por 60 veredas, un casco urbano localizado en el municipio de Lebrija, y los corregimientos: Llano de Palmas en el Municipio de Rionegro y Bocas en el municipio de Girón.

4.2.1 Subcuenca- Nivel II Lebrija Alto, 2319-01-01

Se encuentra localizada en el suroccidente de la Cuenca Alto Lebrija-Nivel I, y está conformada por las microcuencas – Nivel III, Lebrija Alto Directos, La Angula, Lajas, Aburrido y La Honda como se muestra en la Tabla 3.

CÓDIGO SUBCUENCA	MICROCUENCA	CÓDIGO MICROCUENCA	ÁREA (Km2)	PERÍMETRO (Km)
2319-01-01	Lebrija Alto Directos	2319-01-01-01	123.90	58.15
	La Angula	2319-01-01-02	187.52	90.22
	Lajas	2319-01-01-03	44.52	40.21
	Aburrido	2319-01-01-04	32.09	28.39
	La Honda	2319-01-01-05	50.45	33.17

Tabla 3. Microcuencas, Nivel III, de la subcuenca Nivel II Alto Lebrija

4.2.2 Subcuenca - Nivel II Rio de Oro, 2319-01-02

La subcuenca – Nivel II Rio de Oro, se halla ubicada en la parte sur de la cuenca Alto Lebrija y está conformada por las siguientes microcuencas Nivel III: Rio de Oro Bajo, Rio de Oro Medio, Rio de Oro Alto, Rio Hato y Rio Frio.

Las microcuencas Nivel III se encuentran relacionadas en la Tabla 4, con especificaciones de código, área y perímetro.

CÓDIGO SUBCUENCA- Nivel II	MICROCUENCA Nivel III	CÓDIGO MICROCUENCA Nivel III	ÁREA (Km²)	PERÍMETRO (Km)
	Río de Oro Bajo	2319-01-02-01	91.73	48.28
2319-01-02	Río de Oro Medio	2319-01-02-02	166.38	64.98
	Río de Oro Alto	2319-01-02-03	145.44	67.18
	Rio Hato	2319-01-02-04	50.81	46.43
	Rio Frio	2319-01-02-05	118.38	60.36

Tabla 4. Microcuenca Nivel III, subcuenca Nivel II Rio de Oro

4.2.3 Subcuenca - Nivel II Rio Surata - 2319-01-03

Se localiza en la parte nororiental de la cuenca Alto Lebrija y está conformada por las microcuencas-Nivel III, Rio Tona, Rio Charta, Rio Vetas, Rio Surata Alto, Rio Surata Bajo, catalogadas en la Tabla 5.

CÓDIGO SUBCUENCA Nivel II	MICROCUENCA Nivel III	CÓDIGO MICROCUENCA Nivel III	ÁREA (Km²)	PERÍMETRO (Km)
	Rio Tona	2319-01-03-01	194.79	73.29
2319-01-03	Rio Charta	2319-01-03-02	76.60	42.64
	Rio Vetas	2319-01-03-03	157.04	57.78
	Río Surata Alto	2319-01-03-04	137.50	64.63
	Rio Surata Bajo	2319-01-03-05	125.34	62.46

Tabla 5: Microcuencas Nivel III, Subcuenca Nivel II Rio Surata

4.2.4 Subcuenca - Nivel II Rio Negro - 2319-01-04

Se halla ubicada en la parte norte de la cuenca Alto Lebrija, conformada por las microcuencas – Nivel III, rio Negro Bajo, Santacruz y Samaca, especificada en la Tabla 6.

CÓDIGO SUBCUENCA Nivel II	MICROCUENCA Nivel III	CÓDIGO MICROCUENCA Nivel III	ÁREA (Km²)	PERÍMETRO (Km)
	Río Negro Bajo	2319-01-04-01	47.99	34.20
2319-01-04	Santacruz	2319-01-04-02	171.09	62.74
	Samaca	2319-01-04-03	32.69	30.68

Tabla 6. Microcuencas Nivel III, subcuenca Nivel II Rio Negro.

4.2.5 Subcuenca - Nivel II Salamaga - 2319-01-05

La subcuenca se ubica en la parte noroccidental de la Cuenca Alto Lebrija, y está conformada por las microcuencas-Nivel III, Salamaga y Silgara. (ver Tabla 7.).

	CÓDIGO SUBCUENCA Nivel II	MICROCUENCA Nivel III	CÓDIGO MICROCUENCA Nivel II	ÁREA (Km²)	PERİMETRO (Km)
	2319-01-05	Salamaga	2319-01-05-01	136.51	74.48
ı		Silgara	2319-01-05-02	81.53	58.77

Tabla 7. Microcuencas Nivel III, Subcuenca Nivel II Rio Salamaga

La codificación de las microcuencas-Nivel III y su delimitación perteneciente a la Cuenca Alto Lebrija Nivel I, se representan en la Figura 9.

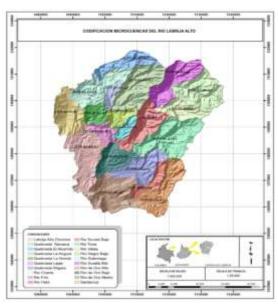


Figura 9. Microcuencas - Nivel III Cuenca Alto Lebrija

4.3 Distribución Pendientes cuenca Alto Lebrija-Nivel I

La cuenca presenta una marcada y contrastante morfometría, encontrando una zona con áreas de pendientes moderadas a extremadamente escarpadas, identificadas en el sector montañoso conformado por el Macizo de Santander; y otra zona donde predominan los sectores planos a moderadamente Inclinados, como el sector del abanico aluvial de Bucaramanga, la meseta estructural de Lebrija y en los sectores de cauces y zonas aluviales.

Los rangos de pendientes se encuentran discriminados en la Tabla 8; su ubicación geográfica está representada en el mapa de pendientes Figura 14.

INTERVALO (%)	INTERVALO (°)	TIPO DE TERRENO		
0 -1 %	0.00 - 1.70°	Plana		
1-3%	1.70° - 4.00°	Ligeramente Plano		
3-7%	4.00° - 6.84°	Ligeramente Inclinado		
7-12%	6.84° - 14.04°	Moderadamente Inclinado		
12-25%	14.04° - 26.46°	Fuertemente Inclinado		
25–50%	26.56° - 29.68°	Ligeramente Empinado		
50-75%	29.68° - 36.87°	Escarpado		
75-100	36.87° - 45.00°	Fuertemente Escarpado		
Mayor a 100%	> 45.00°	Extremadamente o totalmente Escarpado		

Tabla 8. Morfometría general – Pendientes POMCA Lebrija Alto -2015

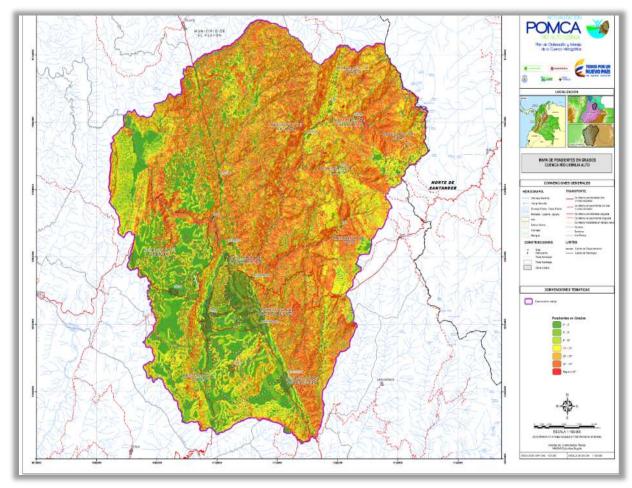


Figura 10. Mapa de Pendientes POMCA Rio Lebrija Alto -2015.

4.4 Red estaciones Hidrometereológicas

Es importante tener en cuenta que la CDMB tiene las siguientes 19 estaciones climatológicas automáticas Davis localizadas en su área de jurisdicción:

Cuence	Nombre	Coordenadas		Elevación	Año de	Municipio
Cuenca		Norte	Este	[msnm]	instalació n	Municipio
	BETANIA	1.327.686	1.100.572	1005	2011	EL PLAYON
	LA NARANJERA	1.318.507	1.097.833	577	2012	EL PLAYON
Cuenca Nivel I Cáchira del Sur	SENA	1.321.359	1.095.129	510	2011	EL PLAYON
	TURBAY	1.324.106	1.114.983	2236	2013	SURATA
	LA AGUADA	1.318.657	1.108.114	1445	2013	EL PLAYON
Nivel II	EL CAIRO	1.304.690	1.100.860	1059	2012	RIONEGRO

Cuence	Nombre	Coord	lenadas	Elevación	Año de instalació	Municipio
Cuenca	Nombre	Norte	Este	[msnm]	n	Municipio
Rio Negro	SANTA CRUZ DE LA COLINA	1.308.473	1.108.727	1430	2012	MATANZA
Nivel II Salamaga	DIAMANTE	1.298.389	1.097.379	1054	2013	RIONEGRO
Nivel II Surata	LAGO ALTO	1.314.018	1.122.312	2600	2011	SURATA
Niver ii Surata	EL ROBLE	1.295.190	1.123.241	2270	2011	CHARTA
Nivel II	EL ABURRIDO	1.292.166	1.106.906	1548	2013	BUCARAMANGA
Lebrija Alto	EL ABURRIDO EL PANTANO	1.266.513	1.094.149	1290	2011	GIRON
	LA JUDIA	1.272.896	1.115.513	2165	2013	PIEDECUESTA
	EL RASGON	1.270.464	1.119.338	2148	2013	PIEDECUESTA
	ACAPULCO	1.265.648	1.102.787	1001	2013	GIRON
Nivel II Rio de Oro	PORTUGAL	1.284.205	1.088.385	1270	2013	LEBRIJA
Rio de Oio	CIUDADELA	1.277.632	1.105.369	938	2012	BUCARAMANGA
	FLORIDA	1.273.904	1.107.315	861	2012	FLORIDABLANCA
	CLUB CAMPESTRE	1.273.072	1.106.399	940	2011	FLORIDABLANCA

Sin embargo, no tienen series de tiempos lo suficientemente largas para tenerlas en cuenta. Se seleccionaron las estaciones pluviométricas del IDEAM, debido a que tienen una serie de tiempo mayor a 10 años, utilizados para el cálculo de los diferentes parámetros en la Evaluación Regional del Agua (ERA), Cuenca Alto Lebrija. La posición geográfica se presenta en la Figura 11.

En la zona de estudio se encuentran tres (3) estaciones hidrológicas del IDEAM activas, con datos suficientes para el análisis, localizadas en la cuenca del Lebrija con código de inicio 2: Puente Sardinas 23197130, Puente Panega 23197130 y, El Conquistador 23197430. (ver Figura 12. y Tabla 9). La estación Puente Panega está situada sobre el Río Vetas; y las estaciones El Conquistador y Puente Sardinas se encuentran instaladas sobre el Río de Oro y la quebrada Santacruz respectivamente.

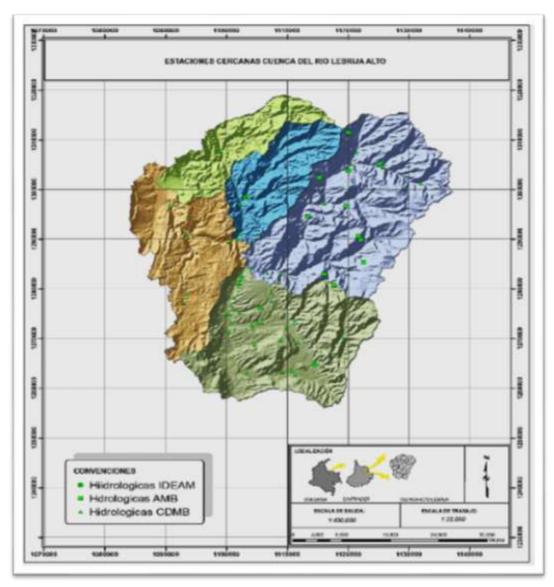


Figura 11. Estaciones cercanas cuenca Nivel I Alto Lebrija, Fuente: Unión Temporal POMCA Río Lebrija Alto 2015.

CÓDIGO	NOMBRE	CAT	ENTIDAD	CORRIENTE	DEPTO	MUNICIPIO	LAT	LONG	ALT	FECHA INST
23197130	PUENTE SARDINAS	LG	IDEAM	SANTA CRUZ	SANTANDER	RIONEGRO	7.293056	-73.14222	770	15/10/1967
23197130	PUENTE PANEGA	LM	IDEAM	VETAS	SANTANDER	SURATÁ	7.341111	-72.99	1620	15/06/1968
23197430	EL CONQUISTADOR	LM	IDEAM	DE ORO	SANTANDER	PIEDECUESTA	6.989444	-73.041111	1000	15/07/1978

Tabla 9. Estaciones en la zona de estudio Unión Temporal POMCA Río Lebrija Alto 2015.

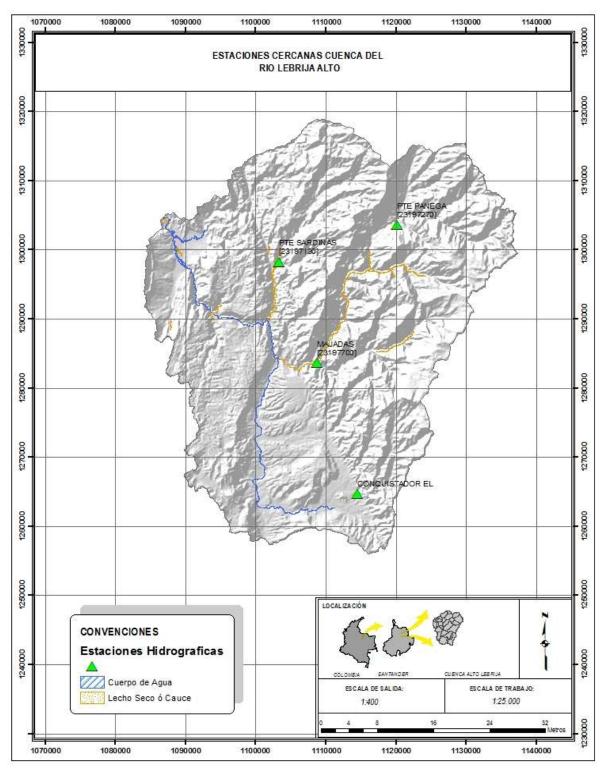


Figura 12. Estaciones Hidrográficas. Fuente: Unión Temporal POMCA Río Lebrija Alto 2015.

SECCIÓN E

CAPITULO 5. AGUA SUPERFICIAL

5.1 Conceptos básicos

5.1.1 Oferta hídrica superficial

La escorrentía superficial es una expresión material de la oferta hídrica total, pero, para fines de uso del recurso hídrico es importante definir que solo una parte de esa escorrentía o caudal puede ser usada y por ello se define la "oferta hídrica disponible". (ENA, 2018)

5.1.2 Oferta Hídrica Disponible (OHTD) (IDEAM, 2010 a, c.p. IDEAM; MADVT, 2013)

La OHTD hace referencia al volumen de agua promedio que resulta de sustraer a la OHTS el volumen de agua que garantizaría el uso para el funcionamiento de los ecosistemas y de los sistemas fluviales.

La escorrentía superficial es una expresión material de la oferta hídrica total, pero, para fines de uso del recurso hídrico es importante definir que solo una parte de esa escorrentía o caudal puede ser usada y por ello se define la "oferta hídrica disponible".

5.1.3 Oferta hídrica regional disponible (OHRD)

La OHRD se obtiene de la oferta hídrica disponible (OHTD) más los volúmenes de agua de caudales de retorno asociados a diferentes usos. Es importante señalar que incluye la suma o resta de caudales de transvase que ingresen a la cuenca o salgan de ella. La OHRD es la oferta que se utiliza para el cálculo de índice de uso de agua (IUA).

Los caudales medidos en estaciones localizadas en cuencas intervenidas representan este caudal disponible regional (Qdr) que en términos generales corresponde a la expresión de la siguiente ecuación: (IDEAM ERA, 2013)

Ecuación 1

$$Q_{dr} = Q_t - Q_{amb} + Q_r \pm Q_{tr}$$

5.1.4 Oferta Hídrica Regional aprovechable (OHRA)

La Oferta Hídrica Regional Aprovechable (OHRA), se representa por el caudal hídrico regional aprovechable Qhra, y se define como el Volumen promedio de agua que resulta de restar del volumen medido en la estación hidrométrica de referencia, representativa de la unidad de análisis, el volumen de agua correspondiente al caudal ambiental. Está oferta se calcula con la siguiente ecuación: (IDEAM ERA, 2013)

$$Q_{hra} = Q_{est} - Q_{amb}$$
 Ecuac 2

Donde:

Qhra: Caudal hídrico regional aprovechable

Qest: Caudal medido en la estación

Qamb: Caudal Ambiental

5.1.5 Caudal medido en la estación, (Qest)

Caudal medido en la estación hidrométrica de referencia, que debe ser representativa de la unidad de análisis correspondiente

5.1.6 Caudal Ambiental, (Qamb)

Volumen de agua necesario en términos de calidad, cantidad, duración y estacionalidad, para el sostenimiento de los ecosistemas acuáticos y para el desarrollo de las actividades socioeconómicas de los usuarios aguas abajo de la fuente de la cual dependen tales ecosistemas (Decreto 3930/2010).

5.1.7 Año hidrológico medio y año hidrológico húmedo

El año hidrológico medio está definido por los caudales medios mensuales multianuales de la serie histórica de caudales medios. (IDEAM ERA, 2013), y el año Hidrológico húmedo, está determinado por los caudales máximos de los medios mensuales multianuales de la serie de caudales medios mensuales.

5.1.8 Año hidrológico seco

Corresponde a los caudales mínimos mensuales de las series de caudales medios; los cuales se identifican con el año típico seco.

5.1.9 Caudal de retorno, (Qr)

Es el porcentaje del caudal extraído por los diferentes sectores/usuarios, el cual es retornado a los cauces o cuerpo de agua en un período de tiempo considerado (IDEAM ERA, 2013), está definido por los caudales medios mensuales multianuales de la serie histórica de caudales medios.

5.1.10 Caudal extraído (Qex) y Caudal de trasvase (Qtr)

El (Qex) es el caudal total extraído de una fuente para la atención de las demandas de los diferentes usos. El (Qtr), es el caudal de agua que se desvía de una cuenca a otra, para aumentar la disponibilidad. En el caso de una unidad de análisis específica, puede ser positivo (si entra) o negativo (si sale hacia otra cuenca).

5.1.11 Balance hídrico

Permite caracterizar las diferentes condiciones del recurso hídrico, dentro de un ecosistema o cuenca, mediante la compresión de almacenamientos, flujos y balances que estén dentro del ciclo hidrológico, a partir de los cuales se determina

el régimen hidrológico para estimar y cuantificar la oferta hídrica. (IDEAM ERA, 2013).

Ecuación 3

$$P - Esc (total) - ETR \pm \Delta S \pm \Delta er = 0$$

P: Precipitación (mm)

Esc: Escorrentía total (mm)(flujo superficial + flujo subterráneo)

ETR: Evapotranspiración real (mm)(evaporación + transpiración)

 ΔS : Almacenamiento

Δ**er**: Término residual de discrepancia

Sin embargo, cuando las unidades hidrográficas de análisis corresponden con áreas hidrográficas reguladas o muy intervenidas para el uso y aprovechamiento por parte de los diferentes sectores usuarios. La ecuación será:

Ecuación 4

 $P - ETR - Ex + Rt \pm Tr \pm \Delta S \pm \Delta er = Esc (medida)$ **Donde**:

P: Precipitación (mm)

Esc: Escorrentía total (mm)(flujo superficial + flujo subterráneo)

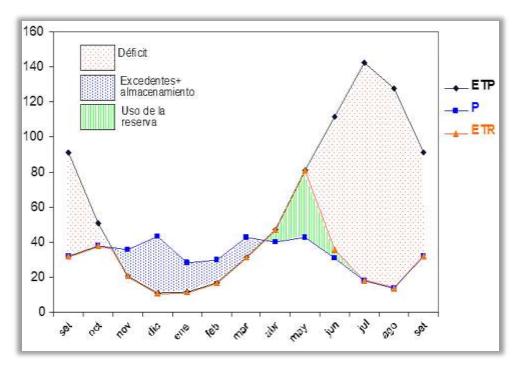
ETR: Evapotranspiración real (mm)(evaporación + transpiración)

 ΔS : Almacenamiento

Δer: Término residual de discrepancia

Ex: Sumatoria del volumen extraído expresado en mm (demanda)1

Rt: Sumatoria del volumen de agua que retorna a la cuenca asociada a diferentes actividades, en el período considerado (mm)


Tr: Sumatoria de volumen de transvase (mm) hacia (+) o desde la cuenca (-)

ETP: Evapotranspiración potencial, mm (evaporación + transpiración)

En la Gráfica 3, se muestra un esquema del balance hídrico entre ETP Y ETR. Se observa excedente + almacenamiento donde P (precipitación) y sobrepasa a ETR

y ETP que corresponde a uso de la reserva, donde la ETR y ETP está por encima de P.

Gráfica 3. Bosquejo del balance hídrico

5.1.12 Precipitación

Es la caída de agua sobre la superficie terrestre en forma de lluvia, llovizna, nieve, y granizo. La cantidad de precipitación sobre un punto de la superficie terrestre es llamada pluviosidad o pluvial. Es una parte importante del ciclo de vida y del ciclo hidrológico y es responsable del depósito de agua dulce en el planeta.

5.1.13 Escorrentía

La lámina de agua que circula sobre la superficie en una cuenca de drenaje se conoce como escorrentía y corresponde al comportamiento de la ecuación del balance hídrico, definido como parte de la precipitación que por no infiltrarse o evaporarse, ésta lámina de agua fluye por la superficie del suelo concentrándose en los cauces y cuerpos de agua. La escorrentía se expresa en milímetros de lámina mensual o anual.

El cálculo de escorrentía media mensual con base en la precipitación media mensual y la Evapotranspiración Real (ETR) media mensual; se obtiene mediante la ecuación propuesta en la guía de la Evaluación Regional del Agua (IDEAM, ERA 2013):

Ecuación 5

$$ESC = P - ETR$$

Donde

P: Precipitación (mm)

ETR: Evapotranspiración Real (mm)

ESC: Escorrentía (mm)

5.1.14 Evapotranspiración real (ETR)

La evapotranspiración está definida como la pérdida de humedad de una superficie por evaporación directa, junto con la pérdida de agua por transpiración de la vegetación. Se expresa en mm por unidad de tiempo.

Para hallar la ETR utilizó el método de Budyco para cada estación.

Ecuación 6

$$ETR = \left[\left(ETP * P * Tanh \left(\frac{P}{ETP} \right) \right) \left(1 - Cosh \left(\frac{ETP}{P} \right) \right) + Senh \left(\frac{ETP}{P} \right) \right]^{\frac{1}{2}}$$

Donde:

P: Precipitación (mm)

ETR: Evapotranspiración real (mm)

ETP: Evapotranspiración potencial (mm).

5.1.15 Evapotranspiración potencial (ETP)

Es la combinación de dos procesos separados por los que el agua se pierde a través de la superficie del suelo por evaporación y por otra parte mediante transpiración del cultivo.

Ecuación 7

$$ETP(Sin\ Corregir) = 16 * \left(\frac{10 * t}{I}\right)^a$$

Donde:

ETP (Sin Corregir): Evapotranspiración potencial a nivel mensual en $\frac{mm}{mes}$, para meses de 30 días y 12 horas de sol teóricas.

t: Temperatura Media Mensual °C.

I: Índice de Calor Anual.

Ecuación 8

$$\mathbf{a} = 675 * 10^{-9} * I^3 - 771 * 10^{-7} * I^2 + 1792$$
$$* 10^{-5} * I + 0.49239$$

Con relación a las precipitaciones recogidas, la ETP se toma como indicador climático de humedad o aridez ambiental, y este parámetro se calcula mediante Thornwhite.

Es primordial realizar la corrección para el número de días del mes y el número de horas de sol.

Ecuación 9

$$ETP = ETP_{Sin\ Correg} * \frac{N}{12} * \frac{d}{30}$$

Donde:

ETP: Evapotranspiración Corregida.

N: Número máximo de horas de sol, depende del mes y de la Latitud.

d: Número de días del mes.

Determinar el índice de calor mensual a partir de la temperatura media mensual (i)

Ecuación 10

$$i = \left(\frac{t}{5}\right)^{1.514}$$

Determinar el índice de calor Anual (*I*) sumando los 12 valores de *i*:

Ecuación 11

$$I = \sum i$$

5.1.16 Almacenamiento

Las características del régimen hídrico y la oferta de agua, se complementan con los almacenamientos superficiales representados por los cuerpos de agua lenticos, ecosistemas de humedales, lagos lagunas, ciénagas y pantanos y oferta regulada con reservorio y embalses.

5.1.17 Área de la cuenca

Se define como la proyección horizontal de toda la superficie de drenaje de un sistema de escorrentía dirigido-directa o indirectamente a un mismo cauce natural. Ese parámetro está especificado en km².

5.1.18 Perímetro de la cuenca

El perímetro corresponde a la longitud sobre un plano horizontal, que recorre la divisoria de aguas. Este parámetro se mide en unidades de longitud y se expresa en kilómetros.

5.1.19 Longitud del cauce principal

Corresponde a la longitud del cuerpo de agua expresado en kilómetros. Es fundamental tener en cuenta la sinuosidad del cauce; el parámetro se determina en kilómetros.

5.1.20 Longitud axial de la cuenca

Se define como la distancia en kilómetros, entre la desembocadura y el punto más alejado de la cuenca. El parámetro se expresa en kilómetros.

5.1.21 Vulnerabilidad hídrica

La vulnerabilidad del recurso está relacionada con la fragilidad de los sistemas hídricos para conservar y mantener la capacidad hidrológica actual ante posibles alteraciones climáticas y a la vulnerabilidad de los sistemas de abastecimiento y distribución frente a la reducción de la oferta y disponibilidad del agua.

El riesgo en la gestión integral del recurso hídrico está relacionado con el manejo y gestión del exceso y/o déficit de agua, unido a la gestión de las cuencas hidrográficas deterioradas, a la pertinencia de los proyectos hidráulicos con el conocimiento de la variabilidad climática e hidrológica del país, al crecimiento no planificado de la demanda sobre una oferta neta limitada, a conflictos por el uso del agua y a las deficientes e inadecuadas acciones para la gestión del riesgo por eventos socio-naturales que aumentan la vulnerabilidad del recurso. (MADS, PNRH 2010)

5.1.22 Demanda hídrica (Dh)

La demanda hídrica superficial se calcula para las actividades socioeconómicas predominantes en las Cuencas que requieren del recurso hídrico para su desarrollo. Los diferentes tipos de demanda contemplados en el análisis corresponden a los

principales usos identificados, mapa de cobertura de uso del suelo, y listado de concesiones suministrado por la Corporación.

Las actividades humanas implican una utilización intensa de agua, tanto para cubrir las necesidades básicas de tipo biológico y cultural, como para el desarrollo económico de la sociedad. Por ello, en la cuantificación de la demanda se integran todas las actividades que requieren el recurso hídrico, mostrándose su comportamiento y distribución en el tiempo para planificar su uso sostenible.

La demanda hídrica se define como el agua extraída consumida, más el agua extraída no consumida, basado en la información de consumos suministrada por la autoridad ambiental y reportada en el estudio POMCA Rio Lebrija, y la información de la clasificación de la demanda reporta por el IDEAM en estudio de aguas de 2014.

La demanda calcula para todas las actividades en m³/ año, teniendo en cuenta su concentración y el tamaño de los usuarios en cada unidad de análisis identificada y contextualizada. Se expresa según la siguiente ecuación.

Ecuación 12

Dh = DT = DUD + DUA + DUAV + DUP + DUI

Donde:

DT: demanda hídrica

DUD: consumo humano o doméstico

DUA: consumo del sector agrícola

DUP: consumo del sector pecuario

DUI: consumo del sector industrial

DUAV: Demanda de agua por uso avícola

5.1.22.1 Consumo humano o doméstico (DUD)

47

El cálculo de la demanda se establece a partir de la estimación del consumo humano requerido, para satisfacer las necesidades fundamentales de un habitante al día, teniendo en cuenta un umbral mínimo de consumo, con el propósito de mantener un nivel de bienestar

La ecuación de cálculo es la siguiente:

$$Ch = P * I + pt$$

Donde:

Ch: consumo humano $\left(\frac{m3}{\tilde{a}\tilde{n}o}\right)$

P: población (número)

I: intensidad del consumo (adimensional)

Pt: pérdidas técnicas $\left(\frac{m3}{a\tilde{n}o}\right)$

5.1.22.2 Consumo en sector agrícola (DUA)

Se refiere a la cantidad de agua que se requiere aportar de manera artificial para suplir las necesidades de riego de un cultivo y se formaliza por la Evapotranspiración del cultivo (ETc) menos el agua que han aportado las precipitaciones. Cuando la precipitación efectiva es mayor que las necesidades de riego, la demanda o riego bruto es igual a cero (0). En caso contrario, cuando la precipitación efectiva es menor al uso consuntivo del cultivo, la demanda se define por la diferencia entre la evapotranspiración del cultivo (ETc) y el agua que se aporta por precipitación.

5.1.22.3 Consumo pecuario (DUP)

Es la cantidad de agua que se utiliza en la cría, levante, engorde, beneficio y sacrificio asociado con la producción de carne proveniente de bovinos, porcinos, caprinos y aves; producción de huevos, leche y lana, así como cría de caballos, conejos, y animales en cautiverio para la producción de pieles.

Ecuación para el cálculo:

Ecuación 14

$$Csp = Cv + Cs + Cua$$

Donde:

Csp: consumo sector pecuario $\left(\frac{\text{m3}}{\text{año}}\right)$

Cv: consumo vital en cada fase del proceso

productivo por especie
$$\left(\frac{\frac{m3}{cab}}{edad}\right) * N^{\circ}$$
 animales

Cs: consumo en sacrificio $\left(\frac{m3}{\tilde{a}\tilde{n}o}\right)$

Cua: consumo en lugares de manejo y alojamiento animal $\left(\frac{m3}{a\tilde{n}o}\right)$

5.1.22.4 Consumo industrial (DUI)

El Decreto 3930 de 2010 considera dentro de los procesos manufactureros aquellos relacionados con la generación de energía, minería, hidrocarburos, fabricación o procesamiento de drogas, medicamentos, cosméticos, aditivos y productos similares, elaboración de alimentos en general y en especial los destinados a su comercialización o distribución. La manera de cálculo se expresa en la siguiente ecuación:

Ecuación 15

$$Csi = Gi + Pi + C + K$$

Donde:

Csi: Consumo del sector manufacturero $\left(\frac{\text{m3}}{\text{año}}\right)$

Gi o Pi: Consumo de los diferentes sectores presentes en el área de estudio de grandes industrias (Gi) o pequeñas industrias (Pi) $\left(\frac{m3}{ano}\right)$

C: Construcción $\left(\frac{m3}{\tilde{a}\tilde{n}o}\right)$

K: Ajuste por cobertura

5.2 Indicadores

5.2.1 Índice de aridez (la)

Es una característica cualitativa del clima que permite medir el grado de suficiencia o insuficiencia de la precipitación, para el sostenimiento de los ecosistemas de una

región. Identifica áreas deficitarias o de excedentes de agua, calculadas a partir del balance hídrico superficial. Integra el conjunto de indicadores definidos en el ENA 2010.

Ecuación 16

$$Ia = \frac{ETP - ETR}{ETP}$$

Donde:

Ia: índice de aridez (adimensional)

ETP: evapotranspiración potencial (mm)

ETR: evapotranspiración real (mm).

Ecuación

Una vez establecidos los cálculos del índice para estaciones representativas de las unidades hídricas de análisis en las regiones, se construyen las isolíneas, teniendo en cuenta los rangos que se encuentran discriminados en la Tabla 10 por categoría índice de aridez.

Rangos	Categoría	Características			
Menor de 0.15		Altos excedentes de agua			
0.15 a 0.19		Excedentes de agua			
0.20 a 0.29		Entre moderado y excedentes de agua			
0.30 a 0.39		Moderado			
0.40 a 0.49		Entre moderado y deficitario de agua			

Rangos	Categoría	Características
0.50 a 0.59		Deficitario de agua
Mayor de 0.60		Altamente deficitario de agua

Tabla 10. Categorías Índices de Aridez

5.2.2 Índice de retención y regulación hídrica (IRH)

Permite calcular la capacidad de retención de humedad de las cuencas con base en la distribución de las series de frecuencias acumuladas de los caudales diarios.

Este índice se mueve en el rango entre 0 y 1, siendo los valores más bajos los que se interpretan como de menor regulación. El cálculo del indicador se realiza empleando la siguiente ecuación:

Ecuación 17

$$IRH = \frac{Vp}{Vt}$$

Donde:

IRH: índice de retención y regulación hídrica

Vp: volumen representado por el área que se encuentra por debajo de la línea de caudal medio en la curva de duración de caudales diarios

Vt: volumen total representado por el área bajo la curva de duración de caudales diarios.

Es un indicador dimensional que varía entre 0 y 1. Los datos se agrupan para tener una descripción cualitativa desde muy alta hasta muy baja capacidad de retención y regulación de humedad.

Los valores obtenidos se agrupan en rangos para facilitar la comparación entre unidades hídricas de análisis. A cada rango se le asigna una calificación cuantitativa. Las cinco categorías propuestas se muestran en la Tabla 11 "Categorías del índice de retención y regulación hídrica (IRH)".

Rango de valores IRH	Categoría	CARACTERÍSTICAS
> 0.85	Muy alto	Capacidad de la cuenca para retener y regular muy alta
0.75 -0.85	Alto	Capacidad de la cuenca para retener y regular alta
0.65 – 0.75	Medio	Capacidad de la cuenca para retener y regular media
0.50 - 0.65	Bajo	Capacidad de la cuenca para retener y regular baja
< 0.50	Muy bajo	Capacidad de la cuenca para retener y regular muy baja.

Tabla 11. Categorías del Índice de Retención y Regulación Hídrica (IRH)

5.2.3 Índice de uso del agua (IUA)

Cantidad de agua utilizada por los diferentes sectores usuarios, en un período determinado (anual, mensual) y unidad espacial de análisis en relación con la oferta hídrica regional disponible (OHRD) neta para las mismas unidades de tiempo y espaciales.

Relación porcentual de la demanda de agua en relación con la oferta hídrica regional disponible.

Ecuación 18

$$IUA = \left(\frac{Dh}{OHRD}\right) * 100$$

Donde:

IUA: índice de uso del agua

Dh: demanda hidrica.

OHRD: oferta hídrica superficial regional disponible.

La categorización de condición de presión de la demanda sobre la oferta hídrica, se define a partir de los mismos cinco rangos y categorías utilizados en el ENA 2010: muy alto, alto, medio, bajo y muy bajo.

Rango (Dh/Oh) *100 IUA	Categoría IUA	Significado
>50	Muy alto	La presión de la demanda es muy alta con respecto a la oferta disponible
20.01 – 50	Alto	La presión de la demanda es alta con respecto a la oferta disponible
10.01 – 20	Moderado	La presión de la demanda es moderada con respecto a la oferta disponible
1-10.	Bajo	La presión de la demanda es baja con respecto a la oferta disponible
≤ 1	Muy bajo	La presión de la demanda no es significativa con respecto a la oferta disponible

Tabla 12. Rangos y categorías del Índice de Uso del Agua (IUA). FUENTE Y DISPONIBILIDAD DE DATO: Series históricas de caudales diarios y mensuales con longitud temporal mayor de 15 años. Información de demanda sectorial para los diferentes usos.

5.2.4 Índice de vulnerabilidad por desabastecimiento hídrico (IVH)

Es el grado de fragilidad del sistema hídrico, para mantener una oferta para el abastecimiento de agua, que ante amenazas –como periodos largos de estiaje o eventos como el Fenómeno cálido del Pacífico (El Niño)-, podría generar riesgos de desabastecimiento.

El IVH se determina a través de una matriz de relación de rangos del índice de regulación hídrica (IRH) y el índice de uso de agua (IUA). (ver Tabla 13)

Categorías Índice de vulnerabilidad al desabastecimiento (IVH)								
Índice de uso de agua	Índice de regulación	Categoría Vulnerabilidad						
Muy bajo	Alto	Muy bajo						
Muy bajo	Moderado	Bajo						
Muy bajo	Bajo	Medio						

Categorías Índice	de vulnerabilidad al de	sabastecimiento (IVH)
Índice de uso de agua	Índice de regulación	Categoría Vulnerabilidad
Muy bajo	Muy bajo	Medio
Bajo	Alto	Bajo
Bajo	Moderado	Bajo
Bajo	Bajo	Medio
Bajo	Muy bajo	Medio
Medio	Alto	Medio
Medio	Moderado	Medio
Medio	Bajo	Alto
Medio	Muy bajo	Alto
Alto	Alto	Medio
Alto	Moderado	Alto
Alto	Bajo	Alto
Alto	Muy bajo	Muy alto
Muy alto	Alto	Medio
Muy alto	Moderado	Alto
Muy alto	Bajo	Alto
Muy alto	Muy bajo	Muy alto

Tabla 13. Categorías del Índice de Vulnerabilidad al Desabastecimiento

5.2.5 Índice de Calidad del Agua - ICA

El índice de Calidad del Agua (desarrollado por la National Sanitation Foundation) se determina a partir de 9 parámetros que son el Oxígeno Disuelto, Demanda Bioquímica de Oxígeno, Nitrógeno Total, Fósforo Total, Sólidos Totales, Turbiedad, Coliformes Fecales, PH y Temperatura.

El índice de Calidad del Agua ICA es calculado como la multiplicación de todos los nueve parámetros elevados a un valor atribuido en función de la importancia del parámetro, así:

$$ICA = \prod_{i=1}^{n} C_i^{w_i}$$

Dónde:

ICA = Es el índice de calidad del agua de una determinada corriente superficial en la estación de monitoreo de la calidad del agua j en el tiempo t, evaluado con base en variables; un número entre 0 y 100, adimensional.

Ci = Calidad del iésimo parámetro, un número entre 0 y 100, obtenido del respectivo grafico de calidad, en función en su concentración o medida.

wi = Valor ponderado correspondiente al iésimo parámetro, atribuido en función de la importancia de ese parámetro para la conformación global de la calidad, un número entre 0 y 1. La sumatoria de valores wi es igual 1, siendo *i* el número de parámetros que entran en el cálculo.

En la Tabla 93, se muestran los descriptores de las variables simplificadas en el ICA.

El ICA toma valores entre 0 y 100, los valores más bajos indican una peor calidad y mayores limitaciones para el uso del agua. La aplicación de ICA se utiliza como una herramienta para determinar el estado de las cuencas de la región en un tiempo determinado y con su análisis se puede evaluar las restricciones en los usos definidos en cada tramo de una corriente. (CDMB-2000).

Es de aclarar que los intervalos definidos por la entidad ambiental no son iguales a los establecidos en el estudio nacional del agua, ENA (2010), y mantenidos en el estudio nacional del agua ENA (2014).

5.2.6 Índice de Alteración "Potencial de la Calidad del Agua – IACAL

El ICAL es un referente de la presión por contaminantes sobre las condiciones de calidad del agua en los sistemas hídricos superficiales, numéricamente es el promedio que surge de dividir las cargas estimadas de cada una de las cinco variables fisicoquímicas, NT+PT+SST+ (DQO-DBO)/5. Las fórmulas de cálculo del indicador para año medio y para año seco, son las siguientes:

Año medio:

$$IACAL_{jt-a\~{n}omed} = \frac{\sum_{i=1}^{n} Catiacal_{ijt-a\~{n}omed}}{n}$$

Donde:

- IACAL_{jt-añomed}: Es el Índice de alteración potencial de la calidad del agua de una subzona hidrográfica j durante el período de tiempo t, evaluado para una oferta hídrica propia de un año medio.
- CATIACAL_{ijt-añomed}: Es la categoría de clasificación de la vulnerabilidad por la potencial alteración de la calidad del agua que representa el valor de la presión de la carga estimada de la variable de calidad i que se puede estar vertiendo a la subzona hidrográfica j durante el período de tiempo t dividido por la oferta hídrica propia de un año medio.
- n: Es el número de variables de calidad involucradas en el cálculo del indicador; n es igual a 5.

5.3 Marco metodológico

5.3.1 Procedimiento para la evaluación y caracterización de la oferta hídrica superficial y su disponibilidad

En el flujograma representado en la Figura 13. Se puntualizan los tipos de oferta y sus relaciones para la evolución regional del agua.

. Figura 13. Procedimiento para la evaluación de la oferta hídrica superficial en las regiones. ERA 2013.

5.3.1.1 Cuenca intervenida

Es aquella que por la presión de las diferentes actividades que se desarrollan en ella, se extrae un volumen de agua permanente y constante. En estos casos en particular, es primordial hacer el análisis teniendo en cuenta las condiciones de régimen natural o realizando un inventario de entradas y salidas hasta el punto de interés hidrológico.

5.3.1.2 Cuenca no intervenida o poco intervenida

Se refiere en general a las cuencas que no tienen una presión alta de demanda hídrica o que, por su magnitud de caudal, la sustracción de agua no representa variaciones sustanciales en los promedios de las series de caudales.

5.3.1.3 Oferta hídrica total superficial (OHTS)

Tomando la definición del IDEAM (2014), la oferta hídrica total superficial es el volumen de agua que escurre por la superficie e integra los sistemas de drenaje superficial.

Se determina con la variable escorrentía, que se calcula a partir de la serie histórica de caudales medidos seleccionando estaciones hidrológicas representativas de cuencas con régimen poco intervenido o a partir de modelos lluvia escorrentía donde no hay estaciones hidrológicas o estas son poco representativas. Según (ENA, 2010) mediante el balance hídrico, se pueden caracterizar las diferentes regiones y establecer el rango de disponibilidad natural de agua, como resultado de la interrelación de los parámetros hidrológicos y meteorológicos (precipitación, evapotranspiración potencial, evapotranspiración real y escorrentía).

El balance hídrico permite verificar los estimativos de escorrentía y evaluar los componentes de precipitación y de evapotranspiración del ciclo hidrológico.

Para el presente trabajo y la poca representatividad de las estaciones hidrológicas se realiza el cálculo a partir de modelos lluvia escorrentía.

Estimación del balance a nivel de cuenca Nivel I y subcuenca Nivel II

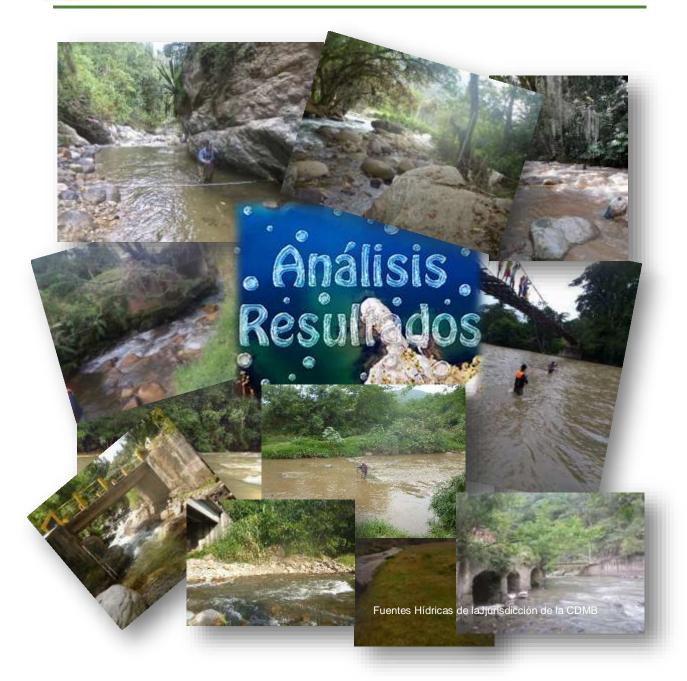
El cálculo del valor aproximado de caudal medio anual para cada una de las subcuencas Nivel II se hace usando la siguiente expresión, considerando que la oferta hídrica es el indicador del caudal medio de una cuenca:

Ecuación 19

$$Qc = 3.17 * 10^{-8} * Ac * (P - ETR)$$

Donde:

Ac: Área de la cuenca (m2).


P: Precipitación media anual de la cuenca (m).

ETR: Evapotranspiración real media anual de la cuenca (m).

Qc: Caudal medio anual (m3/s).

Si bien el IDEAM permite el cálculo de la oferta hídrica mediante un balance hidrológico a largo plazo, esta metodología resulta ser en algunos casos superficial. Sin embargo, de acuerdo a la cantidad de estaciones presentadas en la cuenca y la calidad de la información registrada en estas, se dificulta la construcción de modelos hidrológicos y calibración de estos, al igual que la construcción de relaciones área vs caudal como alternativas metodológicas principales.

SECCIÓN F

CAPÍTULO SEIS

6. ANÁLISIS Y RESULTADOS

6.1 Características morfométricas y fisiográficas de las subcuencas Nivel II de unidades hidrográficas que componen la Cuenca Alto Lebrija

A continuación, se describen algunos de los parámetros más relevantes de la Cuenca del Rio Alto Lebrija. Es importante tener en cuenta, que el comportamiento de la cuenca se debe a la interacción de varios factores (POMCA Cuenca Alto Lebrija), para las cinco (5) subcuencas Nivel II de Unidades Hidrográficas de la cuenca alto Lebrija se realizó la morfometría, cuyos valores se presentan en la Tabla 14.

Código	2319-01-01	2319-01-02	2319-01-03	2319-01-04	2319-01-05
Nivel II de unidades Hidrográficas	Lebrija Alto Directos	Rio Oro	Rio Surata	Río Negro	Río Salamaga
Área (km2)	438,474	572,742	691,263	251,778	218,039
Perímetro (km)	159,719	117,244	137,121	80,223	91,752
Longitud del cauce LT.	39,064	71,340	52,943	42,782	68,385
Longitud de drenaje (Km)	2356,530	2947,370	3296,530	1290,640	1239,290
Longitud Axial de la Cuenca (km)	29,224	53,360	40,594	30,032	38,522
Ancho Medio de la cuenca,	11,224	8,028	13,057	5,885	3,188
Densidad de Drenaje (km/km2)	5,374	5,146	4,769	5,126	5,684
∑ Longitud Drenajes km	2356,528	2947,373	3296,526	1290,638	1239,288
Factor de Forma	0,287	0,113	0,247	0,138	0,047
Coeficiente de compacidad.	2,136	1,372	1,460	1,416	1,740
Índice de alargamiento.	3,480	8,886	4,055	7,270	21,448
Área Mayor (Km2)	312,630	332,460	576,970	153,590	157,040
Área Menor (Km2)	125,840	240,290	114,290	98,190	61,000
Índice de asimetría	2,484	1,384	5,048	1,564	2,574

Código	2319-01-01	2319-01-02	2319-01-03	2319-01-04	2319-01-05
Nivel II de unidades Hidrográficas	Lebrija Alto Directos	Rio Oro	Rio Surata	Río Negro	Río Salamaga
Pendiente Media de la Cuenca (%)	23%	30%	50%	48%	43%
Pendiente Media del Cauce	0,033	0,041	0,059	0,059	0,041
Tiempo de Concentración Kirpich (Horas)	4,142	6,081	4,195	3,553	5,866
Tiempo de Concentración TEMEZ (Horas)	3,870	5,890	4,380	3,720	5,690
Tiempo de Concentración Giadotti (Horas)	4,950	4,710	4,140	3,180	3,810
Tiempo de Concentración V T Chow (Horas)	4,920	7,000	5,450	4,750	6,800
Tiempo de Concentración California (Horas)	4,150	6,090	4,200	3,560	5,870
Elevación Media (msnm)	851,459	1357,898	2332,771	1591,119	1095,592
Coeficiente de Masividad (Km)	1,942	2,371	3,375	6,320	5,025
Sinuosidad	1,337	1,337	1,304	1,425	1,775

Tabla 14. Caracterización morfometríca y fisiográfica de las subcuencas Nivel II

6.2 Precipitación

6.2.1 Selección de estaciones

Para el análisis de las series históricas de precipitación, se tomaron las 19 estaciones ubicadas al interior del área de estudio, y 9 fuera de la Cuenca del Río Lebrija. (ver Tabla 15.)

CÓDIGO	NOMBRE	CAT	ENTIDAD	CORRIENTE	DPTO	Municipio	Lat.	Long.	ALT	FECHA INST
16015020	ISER PAMPLONA	AM	IDEAM	PAMPLONIT	NORTE DE SANTANDER	PAMPLONA	7.37311	-72.645	2340	15/04/1972
23195130	APTO PALONEGRO	SP	IDEAM	DE ORO	SANTANDER	LEBRIJA	7.12147	-73.1845	1189	15/08/1974
23195090	VIVERO SURATA	СО	IDEAM	SURATA	SANTANDER	SURATA	7.36583	-72.9875	1725	15/09/1968
37015010	SILOS	CO	IDEAM	CARABA	NORTE DE SANTANDER	SILOS	7.2075	-72.7533	2765	15/11/1972
23195110	LLANO GRANDE	СО	IDEAM	DE ORO	SANTANDER	GIRON	7.02556	-73.1672	777	15/07/1971
23195200	CACHIRI	СО	IDEAM	CACHIRI	SANTANDER	SURATÁ	7.47389	-72.9911	1850	15/06/1971

CÓDIGO	NOMBRE	CAT	ENTIDAD	CORRIENTE	DPTO	Municipio	Lat.	Long.	ALT	FECHA INST
24055030	ZAPATOCA	CO	IDEAM	QDA ZAPATOCA	SANTANDER	ZAPATOCA	6.79278	-73.2828	1810	15/06/1973
37015020	BERLIN [37015020]	СР	IDEAM	JORDAN	SANTANDER	TONA	7.18694	-72.8686	3214	15/05/1968
23185010	VILLA LEIVA	CP	IDEAM	QDA STOS GUTIERREZ	SANTANDER	SABANA DE TORRES	7.45611	-73.5372	328	15/01/1966
23190700	PIEDECUESTA GJA	PG	IDEAM	LATO	SANTANDER	PIEDECUES TA	6.99333	-73.0678	1000	15/07/1970
23190590	FLORESTA LA [23190590]	PG	IDEAM	QDA DE LA IGLESIA	SANTANDER	BUCARAMA NGA	7.09028	-73.1239	925	15/06/1978
23190830	BUCARAMANG A IDEAM	PG	IDEAM	SURATA	SANTANDER	BUCARAMA NGA	7.12833	-73.1183	1025	15/10/1996
23190450	VETAS-EL POZO	PM	IDEAM	VETAS	SANTANDER	VETAS	7.30889	-72.8783	3220	15/03/1971
24030330	TOPE EL [24030330]	PM	IDEAM	UMPALA	SANTANDER	SANTA BÁRBARA	6.93972	-72.9317	2050	15/09/1958
23190130	TONA [23190130]	PM	IDEAM	TONA	SANTANDER	TONA	7.19611	-72.9706	1910	15/05/1958
37010060	PORTILLO EL [37010060]	PM	IDEAM	ANGOSTURA	SANTANDER	GUACA	7.02778	-72.8044	3824	15/12/1976
23190360	PORTACHUEL O [23190360]	PM	IDEAM	NEGRO	SANTANDER	RIO NEGRO	7.32806	-73.165	800	15/10/1967
23190140	PLAYON EL [23190140]	PM	IDEAM	PLAYONERO	SANTANDER	EL PLAYÓN	7.46472	-73.2014	500	15/05/1958
23190300	PICACHO EL [23190300]	PM	IDEAM	TONA	SANTANDER	TONA	7.11	-72.9664	3310	15/07/1967
23190600	PANTANO EL [23190600]	PM	IDEAM	QDA LA ANGULA	SANTANDER	GIRON	6.9975	-73.2303	1280	15/11/1967
23190380	PALMAS [23190380]	PM	IDEAM	QDA HONDA	SANTANDER	LEBRIJA	7.21108	-73.2179	855	15/11/1967
23190440	NARANJO EL [23190440]	PM	IDEAM	QDA SAN BENITO	SANTANDER	LEBRIJA	7.205	-73.2997	825	15/04/1971
23190340	MATAJIRA [23190340]	PM	IDEAM	SURATA	SANTANDER	MATANZA	7.21333	-73.0647	996	15/10/1967
23190350	LLANO DE Las PALMAS	PM	IDEAM	QDA HONDA	SANTANDER	RIO NEGRO	7.24014	-73.1954	778	15/11/196
23190260	LAGUNA LA [23190260]	PM	IDEAM	QDA LA ANGULA	SANTANDER	LEBRIJA	7.07972	-73.2136	1050	15/05/1967
24030750	GUACA [24030750]	PM	IDEAM	GUACA	SANTANDER	GUACA	6.88111	-72.8583	2400	15/08/1976
23190400	GALVICIA LA [23190400]	PM	IDEAM	TONA	SANTANDER	FLORIDABLA NCA	7.12444	-73.0572	1779	15/01/196
23190280	PALO GORDO [23190280]	PM	IDEAM	DE ORO	SANTANDER	GIRÓN	6.9675	-73.1331	950	15/06/1967

Tabla 15. Estaciones representativas en la Cuenca alto Lebrija

PM: pluviométricas, PG: Pluviográficas, CP: Climatológicas principales, CO: Climatológicas ordinarias, AM: Agrometeorológicas, SP: sinópticas principales

6.2.2 Complementación de series

Teniendo en cuenta las estaciones con sus respectivas series de precipitación se analizó la cota de terreno de cada una de ellas, y se conformaron seis grupos para adelantar la complementación y el análisis de consistencia de las series. En la Tabla 16, se precisa la conformación de los grupos.

GRUPO	LETRA ASIGNADA	CODIGO _CAT	NOMBRE	CATEG	CORRIENTE	MPIO	ALTITU D	FECHA_IN ST
	А	24030750	GUACA [24030750]	PM	GUACA	GUACA	2.4	15/08/1976
1	В	23190300	PICACHO EL [23190300]	PM	TONA	TONA	3.31	15/07/1967
'	С	37010060	PORTILLO EL [37010060]	PM	ANGOSTURA	GUACA	3.824	15/12/1976
	D	24030330	TOPE EL [24030330]	PM	UMPALA	SANTA BÁRBARA	2.05	15/09/1958
	E	23190450	VETAS-EL POZO	PM	VETAS	VETAS	3.22	15/03/1971
2	F	37015010	SILOS [37015010]	СО	CARABA	SILOS	2.765	15/11/1972
_	G	37015020	BERLÍN [37015020]	CP	JORDÁN	TONA	3.214	15/05/1968
	Н	16015020	ISER PAMPLONA	AM	PAMPLONITA	PAMPLONA	2.34	15/04/1972
	1	23190340	MATAJIRA [23190340]	PM	SURATA	MATANZA	996	15/10/1967
	J	23190400	GALVICIA LA [23190400]	PM	TONA	FLORIDABLAN CA	1.779	15/01/1968
3	К	23195200	CACHIRI [23195200]	СО	CACHIRI	SURATÁ	1.85	15/06/1971
	L	23195090	VIVERO SURATA	СО	SURATA	SURATÁ	1.725	15/09/1968
	М	23190130	TONA [23190130]	PM	TONA	TONA	1.91	15/05/1958
	N	23185010	VILLA LEIVA [23185010]	СР	QDA STOS GUTIÉRREZ	SABANA DE TORRES	328	15/01/1966
	Ñ	23190140	PLAYÓN EL [23190140]	PM	PLAYONERO	EL PLAYÓN	500	15/05/1958
4	0	23190350	LLANO DE PALMAS	PM	QDA HONDA	RIONEGRO	778	15/11/1967
-	Р	23190360	PORTACHUE LO [23190360]	PM	NEGRO	RIONEGRO	800	15/10/1967
	Q	23190440	NARANJO EL [23190440]	PM	QDA SAN BENITO	LEBRIJA	825	15/04/1971
	R	23190380	PALMAS [23190380]	PM	QDA HONDA	LEBRIJA	855	15/11/1967
	S	23190830	BUCARAMAN GA IDEAM	PG	SURATA	BUCARAMANG A	1.025	15/10/1996
5	Т	23190260	LAGUNA LA [23190260]	PM	QDA LA ANGULA	LEBRIJA	1.05	15/05/1967
	U	23195130	APTO PALONEGRO	SP	DE ORO	LEBRIJA	1.189	15/08/1974
	V	23190590	FLORESTA LA [23190590]	PG	QDA DE LA IGLESIA	BUCARAMANG A	925	15/06/1978
	W	23195110	LLANO GRANDE	СО	DE ORO	GIRÓN	777	15/07/1971
6	X	23190280	PALO GORDO [23190280]	PM	DE ORO	GIRÓN	950	15/06/1967
	Υ	23190600	PANTANO EL [23190600]	PM	QDA LA ANGULA	GIRÓN	1.28	15/11/1967
	Z Grupos de es	23190700	PIEDECUEST A GJA	PG	LATO	PIEDECUESTA	1	15/07/1970

Tabla 16. Grupos de estaciones

En algunas estaciones se presentaron dificultades por discontinuidad de los datos en las series, incluyendo casos con interrupciones de varios meses en el año o varios años seguidos, siendo necesario aplicar técnicas estadísticas sencillas para la generación de los datos faltantes.

El primer paso efectuado para completar de la información, consistió en la búsqueda de boletines Hidrometeorológicos anuales del IDEAM. Los subsiguientes pasos, se basaron en la aplicación del Método de Correlación contenido en el documento "Técnicas Estadísticas Aplicadas en el Manejo de Datos Hidrológicos y Meteorológicos", elaborado por la Dirección de Meteorología del IDEAM, para la complementación de las series históricas de precipitación.

6.2.2.1 Método de correlación

Plantea una asociación estadística numérica o gráfica, entre los datos de dos estaciones vecinas en una zona climatológicamente homogénea, para obtener datos faltantes mediante la ecuación obtenida, verificando si la correlación es aceptable o desechada a través del coeficiente de correlación R².

En el caso de dispersión de pocos datos, con relación a la tendencia general, se realiza el filtro con la media más la desviación estándar. Cuando el R² no es adecuado (menor a 0,7), se procede a ensayar con otra estación u otro método, para hallar los datos faltantes.

6.2.2.2 Análisis de consistencia

Las series históricas de precipitación complementadas por métodos estadísticos, presentan datos consistentes para los cálculos de ETP, precipitación y ETR en cada subcuenca Nivel II.

6.2.2.3 Resumen de precipitación media mensual

La Tabla 17. Presenta el resumen de promedios mensuales multianuales de precipitación, para las estaciones seleccionadas en la Cuenca Alta Lebrija.

En la Figura 14. Figura 1 se puede observar la isoyeta para la regionalizar la precipitación media mensual multianual de la cuenca alto Lebrija.

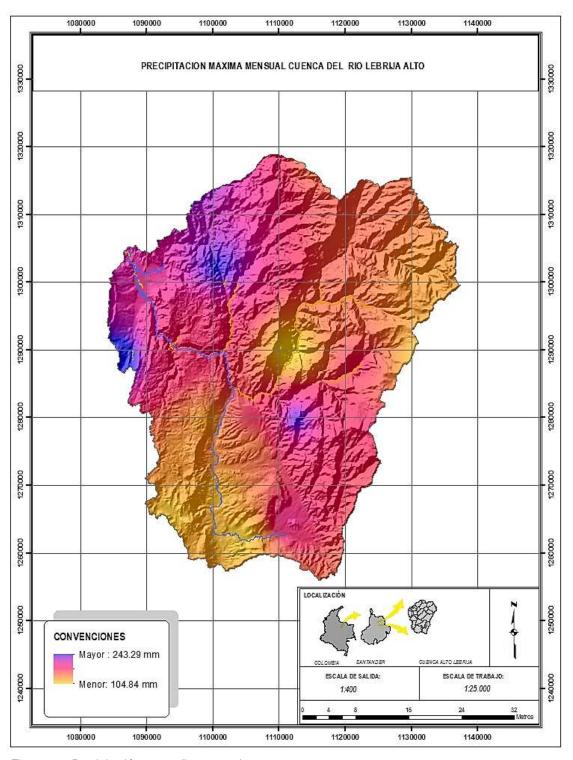


Figura 14. Precipitación promedio mensual.

					Precinit	Precipitación Media de	ed ab eiba	Cuenca	Alto I ebrija	riis	•				
odno ola 17.	LETRA ASIGNAD A	CODIGO_ CAT	NOMBRE	Enero	Febrero	Marzo	Abril			olluc	Agosto	Septiembre	Octubre	Noviembre	Diciembre
<u> </u>	∢	24030750	GUACA [24030750]	52,090	67,027	117,620	188,247	174,486	90,471	79,306	103,707	142,920	176,474	131,507	62,735
,	Ф	23190300	PICACHO EL [23190300]	25,207	41,847	77,164	141,050	169,271	117,164	82,336	114,307	160,000	167,581	115,436	33,907
	O	37010060	PORTILLO EL [37010060]	34,447	44,933	93,020	117,760	130,234	130,957	121,900	130,643	128,817	144,236	83,764	32,836
14:-	Q	24030330	TOPE EL [24030330]	25,580	54,913	94,360	134,700	166,913	104,440	90,328	126,398	169,753	156,153	119,227	44,213
/15-	ш	23190450	VETAS-EL POZO	22,147	29,980	67,307	132,767	112,333	72,713	62,560	73,380	30,000	143,160	103,742	32,240
	н	37015010	SILOS [37015010]	14,654	30,292	53,808	106,115	107,385	103,633	91,850	91,246	99,733	97,738	77,200	24,033
	g	37015020	BERLÍN [37015020]	14,167	24,640	42,540	82,953	86,000	65,973	57,953	69,160	87,107	99,200	61,220	15,953
i	I	16015020	ISER PAMPLONA	34,593	36,407	71,213	133,207	112,667	68,913	61,033	080,69	94,107	141,573	101,407	33,540
	-	23190340	MATAJIRA [23190340]	41,047	57,147	73,500	102,907	105,647	41,073	47,340	61,807	81,280	137,987	101,833	29,547
	7	23190400	GALVICIA LA [23190400]	111,967	119,533	136,533	164,020	205,687	137,913	127,800	152,773	159,907	208,873	194,827	71,527
ო	¥	23195200	CACHIRI [23195200]	17,320	20,747	68,120	140,420	154,800	72,580	50,007	100,973	145,000	184,820	129,773	42,713
- ئەر.	7	23195090	VIVERO SURATA	35,243	40,493	92,336	166,608	132,036	56,719	37,933	76,979	132,036	186,793	140,571	54,186
	Σ	23190130	TONA [23190130]	70,187	62,747	135,733	191,787	157,080	50,273	32,847	59,353	112,448	207,664	173,647	74,602
1 -	z	23185010	VILLA LEIVA [23185010]	48,278	72,869	206,307	301,407	316,600	245,260	227,973	259,700	270,492	406,538	330,721	127,156
. 1-	īΖ	23190140	PLAYÓN EL [23190140]	83,533	100,900	176,380	227,180	229,393	135,700	113,040	147,953	178,673	282,340	230,400	141,293
	0	23190350	LLANO DE PALMAS	84,043	119,080	138,033	126,720	125,313	78,232	78,073	92,088	107,140	223,713	216,293	98,747
4	۵	23190360	PORTACHUELO [23190360]	129,340	174,253	217,393	172,864	190,936	85,500	103,264	106,136	132,400	233,207	252,193	154,986
Α.	Ø	23190440	NARANJO EL [23190440]	85,362	130,671	190,880	192,286	197,364	125,529	91,238	112,077	174,149	339,677	261,884	139,446
10.1	۳	23190380	PALMAS [23190380]	69,400	107,593	140,853	117,913	126,073	84,987	59,013	84,915	90,607	202,940	220,067	94,973
	Ø	23190830	BUCARAMANGA IDEAM	68,273	122,800	128,873	106,940	130,367	100,640	86,633	99,947	122,760	171,153	135,247	71,507
u	٢	23190260	LAGUNA LA [23190260]	51,164	82,457	98,150	98,950	128,214	73,680	64,293	74,140	81,307	180,985	123,563	42,391
)	ס	23195130	APTO PALONEGRO	68,360	119,593	118,107	105,747	126,573	86,600	70,460	90,107	92,780	189,453	139,300	81,873
	>	23190590	FLORESTA LA [23190590]	74,860	121,320	131,207	110,180	150,367	115,213	83,080	103,273	105,640	164,560	129,753	48,420
	≯	23195110	LLANO GRANDE	37,407	98,950	102,000	73,786	106,857	86,229	50,879	77,380	90,685	126,178	91,049	21,122
Ú	×	23190280	PALO GORDO [23190280]	52,818	110,433	91,267	94,533	114,267	72,200	74,333	95,333	76,333	125,467	97,667	30,133
0	>	23190600	PANTANO EL [23190600]	43,333	78,560	80,967	93,236	115,407	74,156	61,115	68,438	91,386	151,108	121,472	47,346
	Z	23190700	PIEDECUESTA GJA	104,360	141,587	176,480	137,993	182,833	119,473	108,373	121,967	127,727	216,060	166,593	72,320

Tabla 17. Precipitación (mm) media mensual multianual de la cuenca Alto Lebrija

6.2.2.4 Resumen de precipitación mínima

El resumen de promedios mensuales multianuales de precipitación, para las estaciones que se trabajaron en la Cuenca Alta Lebrija se encuentra desglosado en la Tabla 18. La isoyeta para regionalizar la precipitación mínima mensual multianual de la cuenca alto Lebrija se puede observar en la Figura 15.

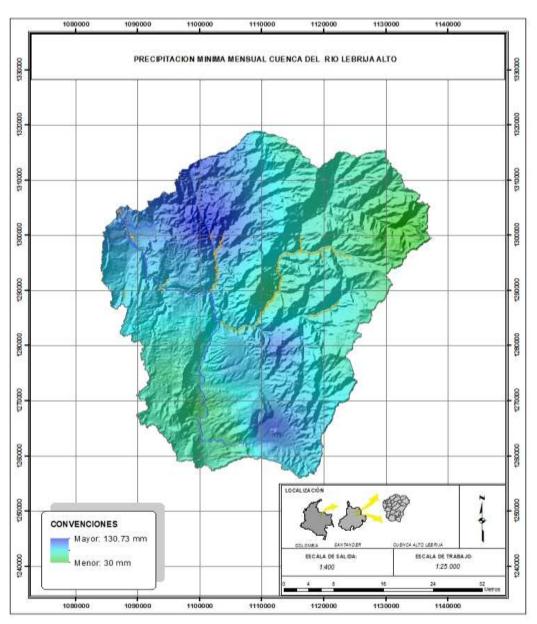


Figura 15. Precipitación mínima mensual.

					Precip	Precipitación Minima	Winima	de la Cuenca Alto Lebrija	inca Alto	- Lebrija					
Grupo	LETRA ASIGNAD A	CODIGO_CA T	NOMBRE	Enero	Febrero	Marzo	Abril	Мауо	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
	∢	24030750	GUACA [24030750]	5,000	10,000	5,000	94,500	84,000	24,300	25,300	46,000	55,000	129,900	54,000	17,900
rooi	В	23190300	PICACHO EL [23190300]	2,600	0,800	1,000	38,000	58,900	37,400	24,300	36,000	67,500	009'96	24,000	10,500
nito	O	37010060	PORTILLO EL [37010060]	10,000	7,000	3,000	27,000	51,000	64,000	38,000	43,000	53,500	53,400	20,000	18,500
oió	D	24030330	TOPE EL [24030330]	9,700	2,500	13,400	54,600	93,500	45,400	31,000	62,989	73,000	80,000	46,000	4,100
	Э	23190450	VETAS-EL POZO	0,100	3,000	6,000	15,000	35,000	20,000	18,000	006'9	27,100	49,600	12,000	3,101
c	н	37015010	SILOS [37015010]	0,400	2,900	7,400	20,600	45,400	61,100	62,100	31,000	53,500	27,600	6,200	2,800
N	Ð	37015020	BERLÍN [37015020]	1,300	4,100	5,400	6,200	32,100	37,100	37,400	14,700	41,000	29,300	2,500	1,200
	I	16015020	ISER PAMPLONA	0,600	10,600	5,300	26,200	17,000	29,400	34,000	20,300	20,700	22,300	12,300	1,900
	-	23190340	MATAJIRA [23190340]	7,400	3,100	5,600	24,900	31,400	14,900	12,800	9,700	24,900	55,200	25,000	10,100
	ſ	23190400	GALVICIA LA [23190400]	1,100	006'0	15,000	63,000	128,300	76,000	56,900	84,000	67,900	132,000	71,000	8,700
ო	¥	23195200	CACHIRI [23195200]	0,200	1,000	13,700	15,000	32,000	10,000	5,800	15,300	51,300	87,000	14,500	1,800
	٦	23195090	VIVERO	2,300	1,500	16,600	54,500	34,100	1,500	006'9	5,200	73,800	100,600	46,900	10,100
ltio	Σ	23190130	TONA [23190130]	000'2	7,100	46,000	41,000	38,000	4,300	2,000	000'6	39,700	83,000	38,000	5,900
	z	23185010	VILLA LEIVA [23185010]	1,200	6,300	32,500	64,200	190,700	92,400	56,900	143,400	73,500	202,400	131,100	28,000
	Ž	23190140	PLAYÓN EL [23190140]	6,000	10,000	63,000	89,900	111,000	55,800	48,000	69,000	70,400	169,000	101,000	24,900
7	0	23190350	LLANO DE PALMAS	2,300	27,000	24,600	27,600	30,000	27,000	000'6	43,000	24,500	114,900	41,000	2,000
†	Ь	23190360	PORTACHUEL O [23190360]	11,100	7,000	147,400	56,000	49,000	41,000	34,400	60,700	40,100	162,400	34,000	44,000
	Ø	23190440	NARANJO EL [23190440]	10,000	3,000	82,000	52,700	90,500	31,400	18,200	48,000	9,900	224,900	52,000	23,300
Λ Ι4	ď	23190380	PALMAS [23190380]	3,000	14,000	29,900	8,000	46,000	15,300	1,100	8,000	37,000	29,600	61,000	15,500
	S	23190830	BUCARAMANG A IDEAM	22,200	30,000	19,400	29,500	50,200	31,300	30,000	42,700	9,800	55,200	57,500	4,900
Ľ	_	23190260	LAGUNA LA [23190260]	9,000	17,000	28,400	26,000	24,700	17,000	6,300	13,000	13,400	94,600	18,000	5,500
)	D	23195130	APTO PALONEGRO	3,200	10,900	33,800	32,500	35,700	36,300	38,100	37,400	30,600	81,700	41,100	8,400
	>	23190590	FLORESTA LA [23190590]	1,500	37,000	48,500	12,900	47,100	32,100	53,100	006'69	22,900	36,900	68,400	000'9
	*	23195110	LLANO GRANDE	5,200	26,600	13,600	20,900	24,800	25,000	3,500	19,800	33,600	21,100	54,235	2,500
U	×	23190280	PALO GORDO [23190280]	7,000	30,000	10,000	14,000	26,000	14,000	10,000	5,000	6,000	56,000	28,000	5,000
)	>	23190600	PANTANO EL [23190600]	7,500	12,000	25,900	11,000	19,000	21,000	8,000	15,000	18,300	21,900	13,000	8,000
	Z	23190700	IEDECUESTA GJ	5,600	47,900	16,100	40,300	64,600	28,900	39,000	53,600	24,000	57,400	70,800	22,700

Tabla 18. Precipitación (mm) mínima mensual multianual de la cuenca Alto Lebrija

6.2.2.5 Resumen de precipitación máxima

En la Tabla 19. Se muestra el resumen de promedios de precipitación máxima mensual multianual, para las estaciones que se trabajaron en la Cuenca Alta Lebrija; así mismo, en la Figura 16. Se puede observar la isoyeta para la regionalizar la precipitación máxima mensual multianual de la cuenca alto Lebrija.

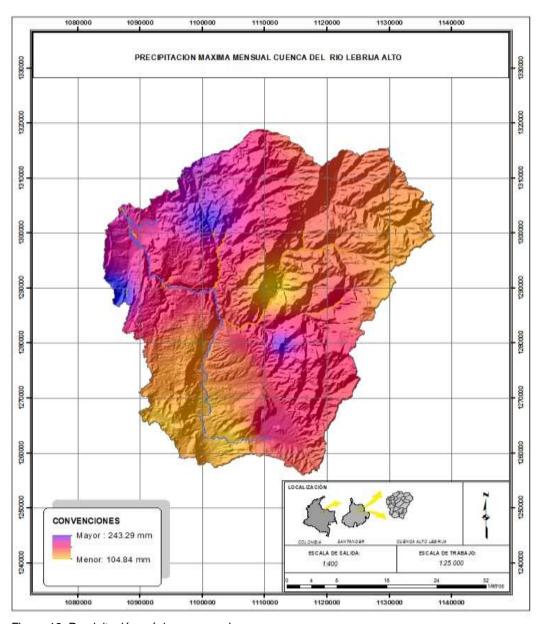


Figura 16. Precipitación máxima mensual.

Mail				i		Precipitación Máxima	tacion I		de la Cu	Cuenca A	Alto Leb	Lebrija.			•	
A	Grupo	LETRA ASIGNAD A			Enero	Febrero	Marzo	Abril	Мауо	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
E		∢	24030750	GUACA [24030750]	124,000	211,200	213,100				202,488	189,300	237,000	269,600	250,600	181,000
C 270 10088 POPERTLOE 88 900 138 100 288 200 173 000 244 500 248 50	,	В	23190300	PICACHO EL [23190300]	91,000	139,000	312,300				184,600	283,000	308,800	321,600	214,300	72,600
E 231904040 VETAPSELL STOON 193,800 177,200 277,800 184,800 177,200 187,800 187,000 188,000 177,200	-	O	37010060	PORTILLO EL [37010060]	89,500	138,100	280,200		273,000		250,400	256,100	278,300	237,600	193,600	000,09
E 37016010 Sill Color Figure		Q	24030330	TOPE EL [24030330]	62,000	173,000	161,600				173,400	211,300	279,000	216,000	280,600	109,100
F 37015010 SBLOGO CBS 500 129,800 158,300 152,100 158,300 152,600 158,200 158,200 150,		В	23190450	VETAS-EL POZO	57,000	93,500	177,200		234,900		128,300	212,700	241,100	278,800	223,700	110,700
G 37015020 3FERLAL INSTITUTION 2.5.00 119.300 198.400 169.600 153.500 165.00 169.00 163.500 165.00 169.00 163.500 165.00 160.00 169.00 163.500 169.00	C	ш	37015010	SILOS [37015010]	29,800	69,500	129,800				126,700	194,400	225,800	166,100	152,900	55,500
H 160 16020 FISER NAME ISER 18.6 FOAD 15.0 FOAD 400.100 223.00 168.000	N	Ð	37015020	BERLÍN [37015020]	23,500	57,600	119,900		180,600		123,500	153,500	191,200	150,200	141,100	33,500
1 23190340 MATALIAN MATAL		I	16015020	ISER PAMPLONA	89,500	82,500	156,700		223,000	162,000	168,600	195,600	237,800	280,000	212,100	95,900
Mathematical M		-	23190340	MATAJIRA [23190340]	74,800	139,700	136,200				233,000	128,000	184,700	243,000	174,000	64,700
K 23196500 CACHING 66.200 315,500 315,500 166,00 166,00 166,00 166,00 166,00 166,00 166,00 166,00 166,00 166,00 202,00 202,00 202,00 202,00 170,200 170,200 211,700 310,700 36,00 36,00 36,00 36,00 36,00 36,00 170,200 170,200 211,700 370,00 370,00 36,00 <td></td> <td>٦</td> <td>23190400</td> <td>GALVICIA LA [23190400]</td> <td>340,000</td> <td>255,000</td> <td>343,200</td> <td></td> <td></td> <td></td> <td>201,100</td> <td>271,800</td> <td>320,600</td> <td>398,300</td> <td>455,700</td> <td>248,400</td>		٦	23190400	GALVICIA LA [23190400]	340,000	255,000	343,200				201,100	271,800	320,600	398,300	455,700	248,400
L 23196090 NVERNO ENTRY EN	Ю	¥	23195200	CACHIRI [23195200]	56,200	82,100	165,600				184,900	198,800	282,700	359,300	275,500	157,100
M 23190130 TOTONADA 211,100 134,700 309,800 405,300 119,000 113,700 160,200 256,300 345,600 684,600 339,000 N 23185014 VLAALENEWA (123185014) 148,100 258,900 581,500 243,000 243,200 245,600 345,600 345,600 448,600 448,600 387,000 243,000 247,000 243,000 247,000 <t< td=""><td></td><td>7</td><td>23195090</td><td>VIVERO</td><td>89,300</td><td>89,500</td><td>236,800</td><td></td><td>259,300</td><td></td><td>125,300</td><td>170,200</td><td>211,700</td><td>302,700</td><td>278,600</td><td>150,100</td></t<>		7	23195090	VIVERO	89,300	89,500	236,800		259,300		125,300	170,200	211,700	302,700	278,600	150,100
N 23186501 VILANO 148,100 235,800 368,900 581,500 245,600 245,000 245,000 245,000 245,000 245,000 245,000 245,000 245,000 247,		Σ	23190130	TONA [23190130]	211,100	134,700	309,800				113,700	160,200	256,300	339,000	284,000	217,000
Ñ 23190140 PLAYONEL IZ3190260 231,000 258,100 249,000 243,000 243,000 243,000 243,000 243,000 243,000 247,000 247,000 244,000 418,100 418,100 O 23190350 LLANO DE LANNALOEL 205,000 258,000 241,000 216,000 153,300 226,400 160,600 244,600 476,000 395,600 397,300 476,000 397,300 476,000 397,300 476,000 397,300 476,000 397,300 476,000 397,300 476,000 397,300 476,000 397,300 476,000 397,300 397,300 397,300 397,300 274,000 276,000		z	23185010	VILLA LEIVA [23185010]	148,100	235,800	398,900		553,900	386,600	433,200	345,800	534,000	684,600	737,900	470,600
O 23190350 LLANODE LATUANDE LALIMAS 205,000 258,500 241,000 156,000 156,300 166,600 166,600 244,600 476,000 <td></td> <td>ĭZ</td> <td>23190140</td> <td>PLAYÓN EL [23190140]</td> <td>231,000</td> <td>259,100</td> <td>309,000</td> <td></td> <td></td> <td></td> <td>269,600</td> <td>247,000</td> <td>323,500</td> <td>418,100</td> <td>420,000</td> <td>503,500</td>		ĭZ	23190140	PLAYÓN EL [23190140]	231,000	259,100	309,000				269,600	247,000	323,500	418,100	420,000	503,500
Q 23190360 PORTACHUEL IZ319040 228,000 376,100 328,200 324,000 134,600 196,800 196,600 395,600 307,300 Q 23190440 NARANUSEL IZ3190403 217,000 259,000 297,700 301,000 355,200 294,000 162,300 470,000 531,200 R 23190480 PALMAS 183,000 299,700 212,200 171,10 164,000 162,300 470,000 531,200 S 23190830 PALMAS 183,000 299,500 212,200 156,000 162,300 470,000 389,300 S 23190830 PALMAS 183,000 294,000 278,000 278,000 156,400 161,000 310,200 389,100 T 23190280 FLORESTALA 142,000 234,000 278,800 156,200 150,400 161,000 301,200 301,200 V 23190580 FLORESTALA 159,300 389,400 223,800 150,800 150,800 150,800 160,000	,	0	23190350	LLANO DE PALMAS	205,000	258,500	253,000		216,000		225,400	160,600	244,600	476,000	556,000	362,700
Q 23190440 NARANUO EL Los MARANUO EL LO	†	۵	23190360	PORTACHUEL O [23190360]	228,000	376,100	308,100		324,000	134,600	196,800	196,600	395,600	307,300	433,100	502,100
R 23190380 PALMAS 183,000 299,500 212,200 171,100 154,000 154,000 152,000 156,300 156,300 156,400 156,400 156,400 156,400 150,100 389,300 T 23190830 BUCARAMANG 173,100 211,300 274,000 256,100 216,600 202,000 156,300 156,400 156,400 312,500 380,100 T 23190280 LAGUNALA 142,000 283,000 258,000 273,800 156,300 150,400 161,000 301,281 V 23190580 FLORESTALA 159,300 289,400 286,000 293,300 150,200 165,000 150,000 301,281 301,281 W 23190280 FLORESTALA 159,300 289,400 280,300 193,900 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000		σ	23190440	NARANJO EL [23190440]	217,000	259,000	297,700		355,200	294,000	203,000	162,300	470,000	531,200	444,300	414,500
S 23190830 BUCARAMANG 173,100 311,300 274,000 226,100 16,600 156,300 156,300 156,300 156,000 156,300 156,300 156,300 160,400 161,000 301,281 U 23190260 LAGUNA 142,000 283,000 324,000 258,000 273,800 155,900 156,900 160,400 161,000 301,281 V 23190280 FLORE STALA 159,300 389,400 240,900 187,500 163,900 160,200 163,400 160,200		ď	23190380	PALMAS [23190380]	183,000	299,500	234,000				154,000	130,130	181,200	389,300	716,000	270,000
T 23190260 LAGUNALA APTO 142,000 283,000 273,800 146,900 146,000 161,000 301,281 301,281 U 23195130 APTO APTO APANTANE 253,100 300,000 300,700 187,500 293,300 146,700 178,200 179,200 195,400 389,100 V 23190510 FLORESTANDE CRANDE 110,800 445,500 228,200 151,800 150,000 150,000 385,400 336,400 346,400 <		S	23190830	BUCARAMANG A IDEAM	173,100	311,300	274,000				156,300	154,400	312,500	380,100	279,100	231,000
U 23195130 APTO PALOBESTA LA 123190590 253,100 123190590 300,000 123190590 300,000 123190690 300,000 12019069 300,000 12019069 300,000 12019069 300,000 12019069 300,000 12019069 300,000 12019069 300,000 12019069 300,000 12019069 300,000 1201906 300,000 12019069 300,000 1201906 <	Ų	T	23190260	LAGUNA LA [23190260]	142,000	283,000	234,000		273,800		149,000	150,400	161,000	301,281	227,000	119,400
V 23190590 FLORE STALA LORE STALA LA LORE STALA 159,300 389,400 240,900 191,500 150,200 150,200 150,200 150,200 150,200 150,200 150,200 150,400 150,400 150,200 194,500 232,800 232,800 232,800 233,900 194,500 232,800 232,800 232,800 194,500 232,800 232,800 232,800 232,800 194,500 232,800 232,104 232,800 232,800 232,800 232,800 232,800 232,800 232,800 232,800 232,800 232,800 232,800 232,800 <th< td=""><td>n</td><td>ס</td><td>23195130</td><td>APTO PALONEGRO</td><td>253,100</td><td>300,000</td><td>300,700</td><td></td><td>208,800</td><td></td><td>118,200</td><td>179,200</td><td>195,400</td><td>389,100</td><td>235,100</td><td>305,900</td></th<>	n	ס	23195130	APTO PALONEGRO	253,100	300,000	300,700		208,800		118,200	179,200	195,400	389,100	235,100	305,900
W 23195110 LLANO 445,500 445,500 228,200 163,400 151,800 166,900 167,800 167,800 194,500 232,800 X 23190280 123,190280 126,000 450,000 228,000 250,000 137,000 189,000 194,000 235,000 Y 23190600 122,000 325,000 466,500 166,500 140,000 122,000 194,000 209,286 272,104 Z 23190700 EDECUESTA GJ 259,900 400,300 479,900 188,500 181,800 230,800 275,300 395,100		>	23190590	FLORESTA LA [23190590]	159,300	389,400	240,900		293,300	193,900	150,200	163,300	252,100	346,400	240,200	169,100
X 23190280 23190600 PALO GORDO 123190600 126,000 122,000 208,000 260,000 250,000 166,500 150,000 234,500 189,000 122,000 189,000 122,000 190,000 122,000 190,000 209,286 272,104 Z 23190700 EDECUESTA GJ 259,900 400,300 355,100 347,900 188,500 181,800 275,300 395,100		*	23195110	LLANO GRANDE	110,800	445,500	228,200				106,900	157,800	194,500	232,800	172,200	54,500
Y 23190600 PANTANO EL (23.190600] 122,000 325,000 266,500 166,500 234,500 140,900 122,000 140,900 209,286 272,104 Z 23190700 EDECUESTA GJ 259,900 400,300 479,900 355,100 198,500 198,500 181,800 230,800 275,300 395,100	U	×	23190280	PALO GORDO [23190280]	126,000	450,000	208,000		250,000	137,000	189,000	202,000	194,000	235,000	247,000	108,000
23190700 EDECUESTA GJ 259,900 400,300 479,900 355,100 347,900 198,500 181,800 230,800 275,300 395,100		>	23190600	PANTANO EL [23190600]	122,000	325,000	260,000		234,500	140,000	122,000	140,900	209,286	272,104	197,100	140,400
		Ν			259,900	400,300	479,900	355,100	347,900	198,500	181,800	230,800	275,300	395,100	355,100	244,000

Tabla 19. Precipitación (mm) máxima mensual multianual de la cuenca Alto Lebrija

El comportamiento de la precipitación media en un año, representando la variabilidad mes a mes se visualiza claramente en las Figura 17 para el periodo de enero-junio y en la Figura 18 los meses de julio a diciembre.

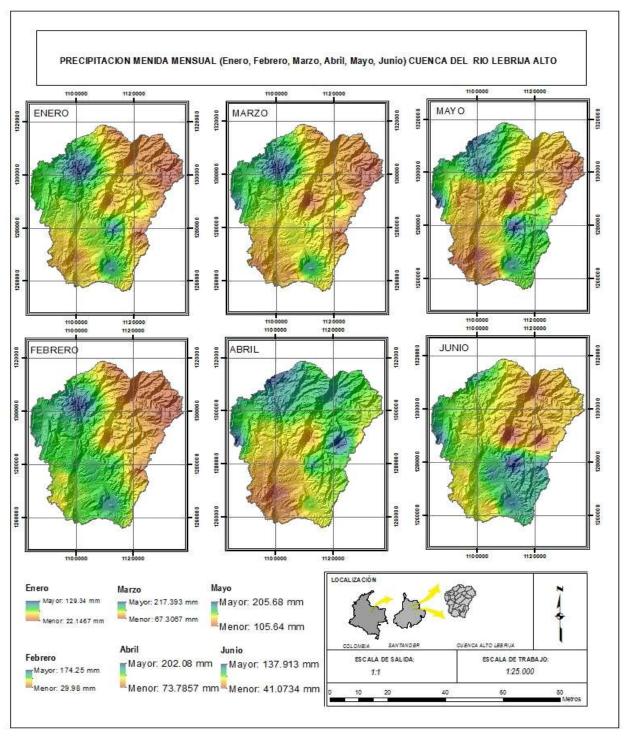


Figura 17. Precipitación medio mensual enero a junio.

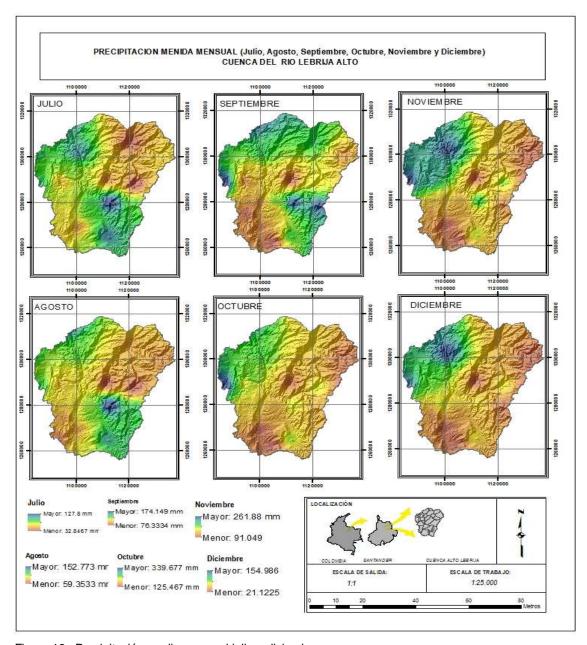


Figura 18. Precipitación medio mensual julio a diciembre.

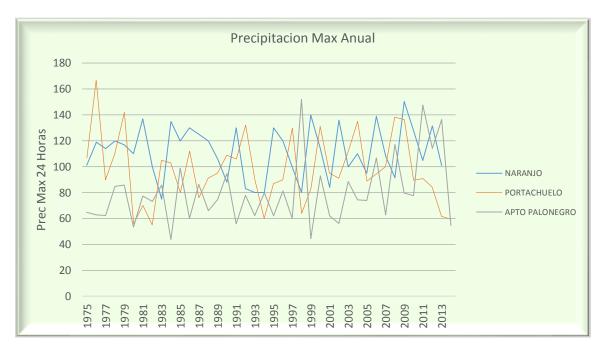
6.2.2.6 Precipitación máxima en 24 horas

La precipitación máxima en 24 horas es útil para comprender los posibles procesos erosivos y la generación de caudales máximos en el área de estudio. La precipitación máxima en 24 horas, que como su nombre lo indica, es la cantidad de lluvia que cae en un solo día para las estaciones disponibles de análisis, se presenta en las Tablas 20 y 21.

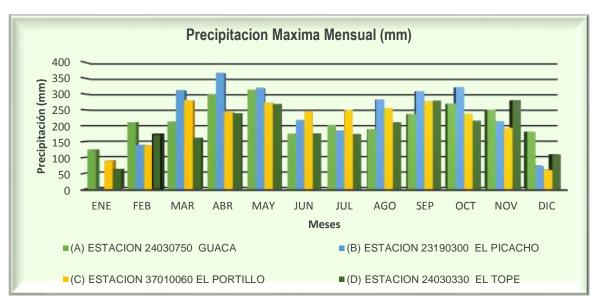
		Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Anual
	Medios	31.5	38.5	44.8	49.3	52.7	37.7	35.6	39.2	43.2	54.5	52.4	35	42.9
PLAYON 23190140	Máximos	92	101	113	108.5	137	70	104	103	106	130	103.2	121	137
25150140	Mínimos	3	0	0	19	12	11	11	11	8	13	8	8	0
	Medios	21.6	34.4	34.6	39	35.6	33.5	32	32.6	30.5	41.1	34	18.2	32.3
PALOGORDO 23190280	Máximos	90	150	80	130	82	105	82	80	91	132	98	103	150
23130200	Mínimos	0	0	5	6	5	6	5	0	0	10	8	0	0
	Medios	34.7	46.7	50	51.3	46.6	34.4	27.7	33.2	40.2	58.3	63.7	42.2	44.1
PALMAS 23190380	Máximos	140	135	135	129	95	124	102	96	120	208.5	135	104	208.5
23130300	Mínimos	0	2	3	8	17	0	1.1	4	7	10	5	0	0
	Medios	36.6	38.2	40.8	43.4	45.4	33	31.2	29.5	36.7	46.4	42.9	31.2	37.9
LA GALVICIA 23190400	Máximos	97.5	95	97	124	118	94	72	91	98	108	98	103	124
23190400	Mínimos	1.1	0.7	6	12	13	11	11.8	8	10	18	12	3.8	0.7
	Medios	35.7	53.2	65.3	67.6	67.6	46.4	33.7	44.2	55.3	73.2	72.2	51.9	55.5
EL NARANJO 23190440	Máximos	95	139	137	134	130	136	120	102	135	135	150.2	117	150.2
23190440	Mínimos	0	0	0	16.6	28.6	14.8	5	8	6.5	20	29	5	0
	Medios	22.9	30.3	34.6	38.2	30.8	23.8	23.8	27	30.8	43.2	37.5	20.3	30.3
EL PANTANO	Máximos	125	132	119	115.3	84	50.7	65.5	70	81	110	110	101	132
23190600	Mínimos	0	0	3	8.5	8	6	3	6	5	10	10	0	0
	Medios	37.1	42.6	53	43.8	49.7	28	31.3	31.9	33.7	47.2	47	33.1	39.9
GJA PIEDECUSTA	Máximos	134	129	134	113	129	65	122.3	96.2	78.3	90.6	103	104	134
23190700	Mínimos	2.3	3	5.2	10	11.2	5.4	6.5	5.4	6.7	15.1	13.1	3.7	2.3
	Medios	27.7	37.7	44.4	31.8	41.2	30.3	30.2	24	36.5	45.4	38.7	33.3	35.1
BMANGA IDEAM	Máximos	63.5	93.3	72.9	70.8	74	83.2	53.3	44.9	100.5	117.5	76	95.3	117.5
23190830	Mínimos	6.2	10.6	14	8.2	16.5	9.1	9.7	8.2	3.1	8.5	11.9	2.3	2.3
	Medios	21.8	31.9	35	31.3	29.4	27.2	24.6	24.5	26	41.2	32.7	15.9	28.5
LLANO GRANDE	Máximos	101	182	95.3	83.5	84	82.7	73	64	63.5	91.4	85.3	82.5	182
23195110	Mínimos	2.1	0.6	6.5	9.6	9.5	6.7	2.6	3.6	5.5	12	0	0.4	0
	Medios	26.5	38.7	44.7	39.8	34.1	26	30.3	29.6	30.9	44.4	43	28.5	34.7
PALONEGRO	Máximos	98.8	152	117	86.2	72.5	69.7	88.8	75.8	85.9	147.6	114.1	90.6	152
23195130	Mínimos	1.4	3	12.9	7.8	10.4	8.4	5.5	5.8	6.8	12.4	3.7	1.7	1.4
	Medios	19.7	22.4	28.2	31.9	33.4	26.2	19.1	27.6	33.8	35.3	32.9	26.4	28.1
GUACA	Máximos	46	58.2	100	57	91	50	56	70	75	100	78	73	100
24030750	Mínimos	5	0	5	7	11	7	3	9	11.2	15	8	0	0
	Medios	5.4	9.4	11.7	19.6	20.8	15.1	12	16.3	20.5	21.4	14.4	7.3	14.5
BERLIN	Máximos	13.3	55.3	29	42.6	49.2	31.7	36	36.3	54	42.7	30	21	55.3
37015020	Mínimos	0	0	0	1.6	6	2.1	3.7	2.6	6.9	9.9	0.6	0	0
	Medios	8.3	10.2	18	29.7	33.4	19.2	11.4	21.6	26.4	34.2	26.5	12.7	21
CACHIRI	Máximos	33	56.3	60.2	74.6	65.8	53.5	37.6	48.4	51.4	103	54.3	68.9	103
23195200	Mínimos	0	0	0	7.3	11.4	1.6	1.2	2.3	5.9	6.5	3.2	0	0

Tabla 20. Precipitación máxima en 24 horas [mm/día]

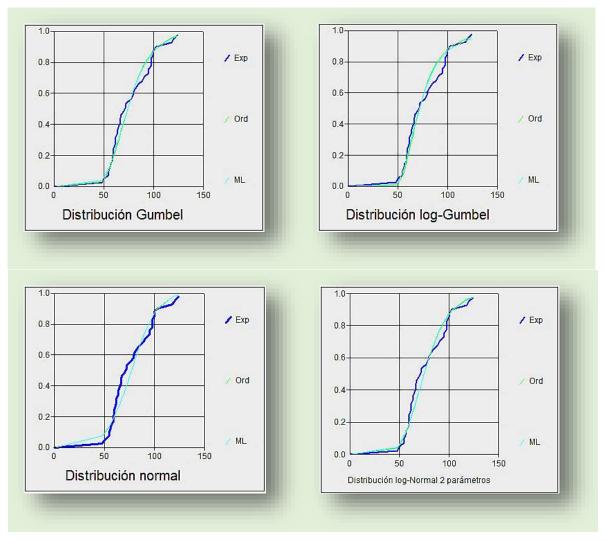
ESTACIÓN		Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Anual
	Medios	16.8	20.2	25.1	32.9	36.7	30.8	26.4	29.5	34.3	34.1	31.9	21.3	28.3
EL TOPE 24030330	Máximos	132	87	63	82	82	90	90	70	80	96	80	60	132
	Mínimos	0	0	0	6	10	10.2	6	10	10	12	10	0	0
	Medios	19.9	25.7	25.6	28.8	30.8	18.1	12.8	17.8	26.3	33.5	29.3	20.1	24
MATAJIRA 23190340	Máximos	55	85.4	78.5	69.5	66	115	85	53.7	87	65	60	58.3	115
	Mínimos	0	0	1	7.6	5.5	4.8	4	2.1	4	10	7	2	0
	Medios	11.2	17.4	20.9	34.6	33.4	27.5	22.9	26.1	32.6	31.9	29	17.5	25.4
EL PICACHO 23190300	Máximos	28	73	60.7	68	68	60	60	47	75	75	68	109	109
	Mínimos	1	0.8	1	10	9.4	8	5	7	6	9.7	8	0	0
	Medios	41.7	53.2	66.8	52.8	49.5	30.4	31.4	33.2	43.5	57.4	61.4	49.1	47.5
PORTACHUELO 23190360	Máximos	95	130	140	110	131	70	86	70	126.3	167	142	136	167
	Mínimos	3	4	15	12.3	13	10	5	8	13	12	12	5	3
	Medios	22.4	23.9	32.8	38.8	37.7	16.4	11.4	17.8	28.6	44.4	39.8	27.3	28.4
TONA 23190130	Máximos	74	70	140	80	97	65	50.3	80	85	130	105	80	140
	Mínimos	0	0	0	4	3	0	0	0	2	4	5	2	0
	Medios	9.3	13.1	16.8	25.2	23.7	16.9	13.7	16.3	20.8	24.2	23	11.7	17.9
VETAS EL POZO 23190450	Máximos	40	70	80	50	52.2	76	50	79	50	60.8	50	35.4	80
	Mínimos	0	0	1	2	5	3	2	2	7	7	4	0	0
	Medios	12.7	13.6	20.5	33.3	29	16.7	10.8	20	27.4	30.9	30.9	17.8	22
VIVERO SURATA 23195090	Máximos	41.6	35	52	90	49.2	44.2	31.2	88	53.4	51	64.6	47.5	90
23133030	Mínimos	0	0	0.9	11.5	4.9	0.5	1.5	2.5	11.3	12.8	9.6	0.4	0


Tabla 21. Precipitación máxima en 24 horas [mm/día]

6.2.2.7 Análisis de frecuencia precipitación máxima en 24 horas


A partir de las series anuales de precipitación máxima en 24 horas, se realizó un análisis estadístico utilizando las distribuciones de probabilidad: EV3, Gumbel, Log Normal, Log Pearson, Pearson y Normal y el Método de Momentos como procedimiento de estimación de parámetros para todos los casos.

En el Anexo 5 del POMCA Alto Lebrija, se presentan los resultados del análisis de frecuencia de precipitación máxima en 24 horas multianual y de precipitación máxima en 24 horas máxima mensual. Unos ejemplos de los resultados obtenidos se presentan en las Gráficas 4 y 5.


Gráfica 4. Precipitación máxima anual.

Gráfica 5. Histograma Precipitación valores extremos (mm).

Se realizó el análisis de bondad de ajuste para las distribuciones de probabilidad mencionadas; los resultados para todas las estaciones se presentan en el Anexo 5 del POMCA alto Lebrija. En el ejemplo de la Gráfica 6. Se muestran los resultados correspondientes a la Estación Galicia.

Gráfica 6. Análisis de frecuencia de precipitación máxima en 24 horas Estación Galicia

La Tabla 22, despliega el consolidado de los resultados del análisis de precipitación diaria máxima en 24 horas para diferentes periodos de retorno y la distribución usada.

ESTACIÓN	Distribución	TR2	TR2.33	TR5	TR10	TR15	TR25	TR30	TR50	TR100	TR500
PLAYON 23190140	Normal	88.06	91.83	105.9	115.2	119.83	125.1	126.9	131.53	137.3	149
PALOGORDO 23190280	Gumbel	65.7	69.65	86.81	100.8	108.67	118.4	121.9	131.54	144.5	174.6
PALMAS 23190380	Gumbel	88.58	93.49	93.49	132.2	141.94	154.1	158.4	170.34	186.5	223.8
LA GALVICIA 23190400	Gumbel	73.8	77.15	91.72	103.6	110.27	118.6	121.5	129.69	140.7	166.2
EL NARANJO 23190440	Normal	110.5	114.2	128	137.2	141.76	147	148.7	153.27	159	170.4
EL PANTANO 23190600	Gumbel	70.6	74.37	90.76	104.1	111.64	121	124.3	133.49	145.9	174.6

ESTACIÓN	Distribución	TR2	TR2.33	TR5	TR10	TR15	TR25	TR30	TR50	TR100	TR500
GJA PIEDECUSTA 23190700	Log normal de 2 parámetros	81.87	85.79	102.2	114.7	121.52	129.8	132.6	140.54	151	174.6
BMANGA IDEAM 23190830	Gumbel	33.81	35.18	42.27	47.7	51.03	54.81	56.34	60.07	65.3	77.39
LLANO GRANDE 23195110	Gumbel	61.13	65.29	83.47	98.24	106.57	116.9	120.5	130.76	144.7	177.4
PALONEGRO 23195130	Gumbel	75.71	79.93	98.27	113.2	121.64	132.1	135.8	146.09	160	192.1
GUACA 24030750	Gumbel	50.83	53.55	65.37	75	80.43	87.16	89.55	96.19	105.2	125.9
BERLIN 37015020	Log Gumbel	30.07	31.12	36.14	40.83	43.74	47.63	49.09	53.4	59.81	77.74
CACHIRI 23195200	Log Gumbel	45.61	48.04	58.62	67.24	72.1	78.12	80.26	86.2	94.21	112.7
EL TOPE 24030330	Log-Gumbel	48.08	50.91	65.3	79.98	89.68	103.3	108.7	124.98	150.9	233.4
MATAJIRA 23190340	Log normal de 2 parámetros	51.7	54.44	65.98	74.96	79.89	85.89	87.99	93.78	101.5	119.1
EL PICACHO 23190300	Normal	51.98	55.33	67.79	76.06	80.19	84.88	86.44	90.57	95.7	106.1
PORTACHUELO 23190360	Log normal de 2 parámetros	94.52	99.23	118.9	134.1	142.42	152.5	156	165.62	178.4	207.4
TONA 23190130	Log-Gumbel	30.07	31.12	36.14	40.83	43.74	47.63	49.09	53.4	59.81	77.74
VETAS EL POZO 23190450	Gumbel	37.17	39.65	50.43	59.22	64.17	70.31	72.49	78.55	86.72	105.6
VIVERO SURATA 23195090	Log Gumbel	45.9	47.8	56.97	65.74	71.26	78.76	81.6	90.06	102.9	139.9

Tabla 22. Precipitación Máxima en 24 horas para diferentes periodos de retorno [mmm/día]

6.2.2.8 Curvas sintéticas de intensidad, duración y frecuencia IDF

Se adoptaron curvas sintéticas utilizando el procedimiento del manual de drenaje de INVIAS. La metodología simplificada de cálculo de las curvas intensidad – duración – frecuencia se lleva a cabo siempre y cuando no se dispone de datos históricos de precipitación de corta duración. Teniendo en cuenta lo anterior, en este estudio se dedujeron curvas intensidad – duración - frecuencia por correlación con la precipitación máxima promedio anual en 24 horas, precipitación total media anual y la elevación de la estación, Anexo 6 del POMCA Alto Lebrija.

Sin embargo, la mejor correlación obtenida fue con la precipitación máxima promedio anual en 24 horas y es la que se propone para los estudios por ser la más sencilla de utilizar. La expresión resultante está dada por:

$$i = A * Tb * Md/(tc/60)c$$

Dónde:

i: Intensidad de precipitación, en milímetros por hora $\Big(\frac{mm}{h}\Big)$.

T: Periodo de retorno, en años.

M: Precipitación máxima promedio anual en 24 h a nivel multianual

t: Duración de la lluvia, en minutos (min).

a, **b**, **c**, **d**: Parámetros de ajuste de la regresión.

Los parámetros de esta ecuación fueron regionalizados como se presenta en la Tabla 23 y Figura 19.

Región	а	b	С	d
Andina	0.94	0.18	0.66	0.83
Caribe	24.85	0.22	0.50	0.10
Pacífico	13.92	0.19	0.58	0.20
Orinoquía	5.53	0.17	0.63	0.42

Tabla 23. Valores coeficientes curvas sintéticas. Tomado del Manual de drenaje para carreteras. Instituto Nacional De Vías. 2009. Bogotá

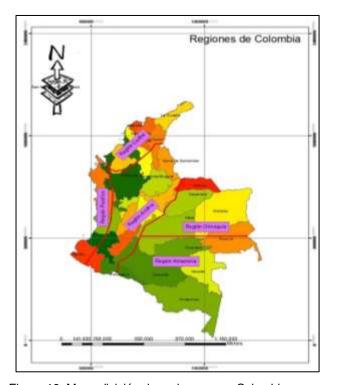
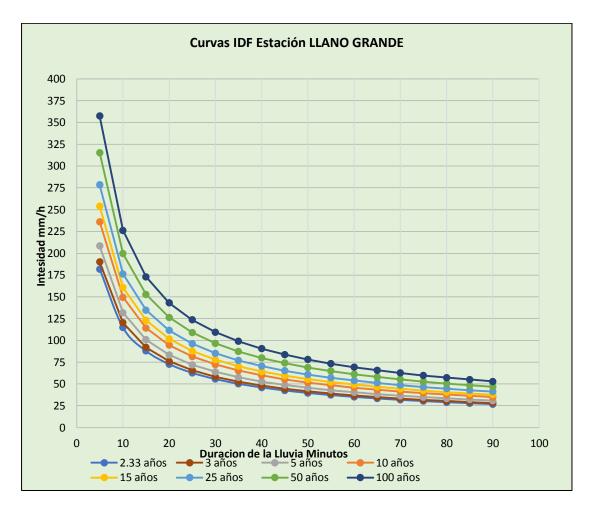



Figura 19. Mapa división de regiones para Colombia.

Con los datos de las precipitaciones máximas en 24 horas se construyeron las curvas sintéticas de intensidad duración y frecuencia - IDF para cada una de las estaciones seleccionadas en el proyecto. En la Gráfica 7, se observan las curvas para la estación

Llano grande; para las demás estaciones, se muestran en el Anexo 6 del Pomca Alto Lebrija. (Carpeta Clima e Hidro PT MAX 24 HORAS).

Gráfica 7. Curva IDF sintéticas para estación Llano grande

6.2.2.9 Distribución espacial

El cálculo de la precipitación máxima en 24 horas, se realiza con la serie de datos de las estaciones cercanas y representativas dentro de la zona de estudio, debido a que brindan información fundamental de las lluvias máximas, las cuales producen el aumento de los caudales que influyen en las franjas de inundación.

En el presente estudio se realizó el cálculo de la lluvia máxima para los periodos de retorno de 2, 2,33, 5, 10, 15, 25, 30, 50, 100 y 500 años. La precipitación máxima para los diferentes periodos de retorno se obtiene de acuerdo a la distribución de frecuencia

Gumbel, Log Gumbel, normal y Log Normal, utilizando la ecuación que presentó mejor ajuste. En el anexo 5 (Consistencia de datos) del POMCA Alto Lebrija, se encuentran las distribuciones de probabilidad utilizadas para las estaciones seleccionadas.

En conclusión, de acuerdo a los cálculos, del promedio de la precipitación mensual de las estaciones analizadas es proporcional a la precipitación máxima con un periodo de recurrencia de 2.33 (ver Figura 20)

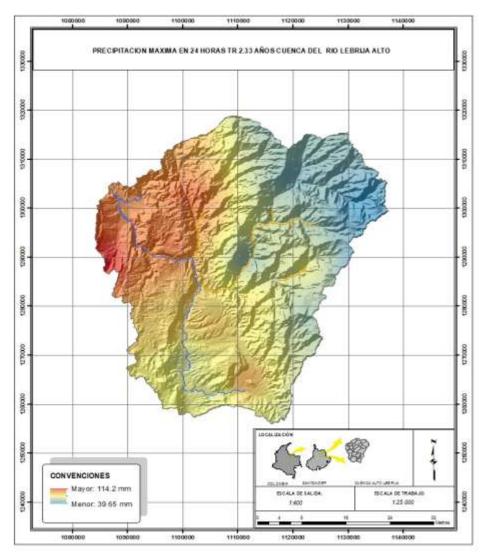


Figura 20. Precipitación máxima en 24 horas Tr 2.33 cuenca Rio Alto Lebrija.

Los resultados obtenidos en el cálculo de la precipitación máxima (ver Tabla 24), los tiempos de retorno Tr de 25, 50 y 100, los valores no presentan una variación significativa. (ver Figuras 21, 22 y 23).

Tiempos de retorno Tr	Precipitación Máxima 24h mm	Precipitación Mínima 24h mm
25	154.07	68.29
50	170.34	76.41
100	186.46	85.14

Tabla 24. Precipitación máxima en 24 h Tr. 25,50 y 100

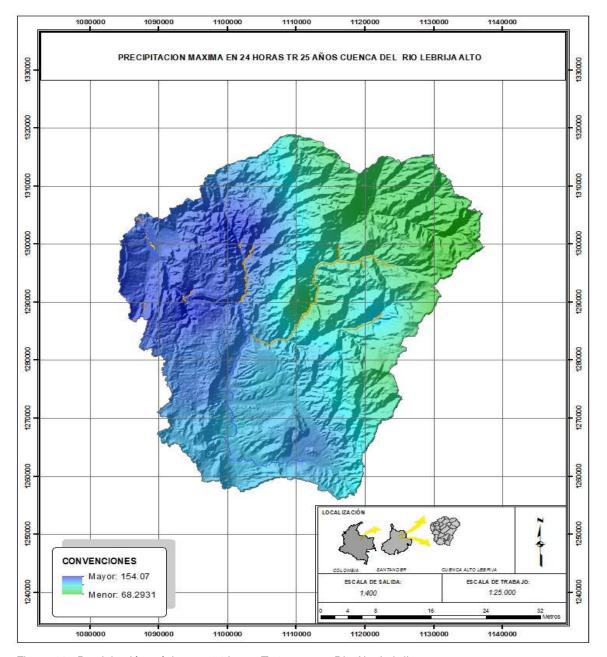


Figura 21. Precipitación máxima en 24 horas Tr 25 cuenca Rio Alto Lebrija.

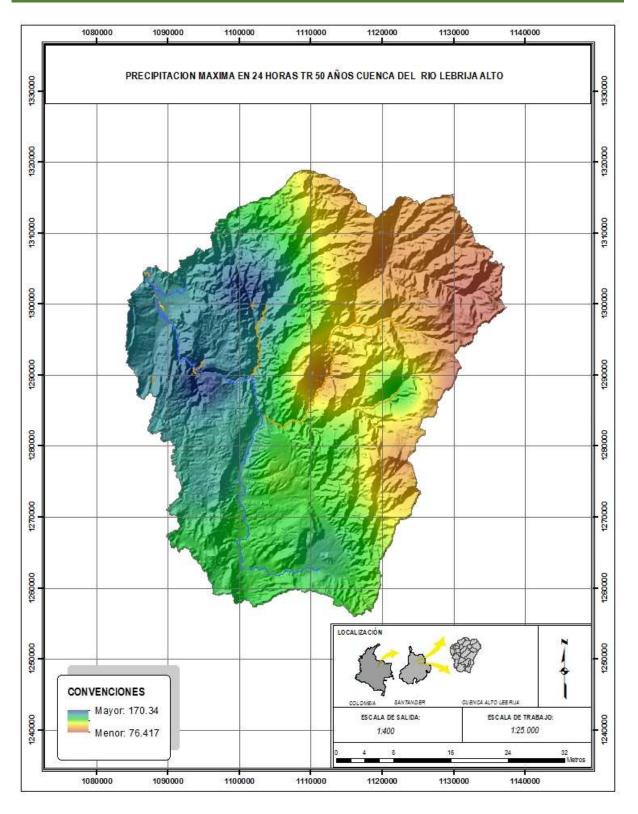


Figura 22. Precipitación máxima en 24 horas Tr 50 cuenca Rio Alto Lebrija.

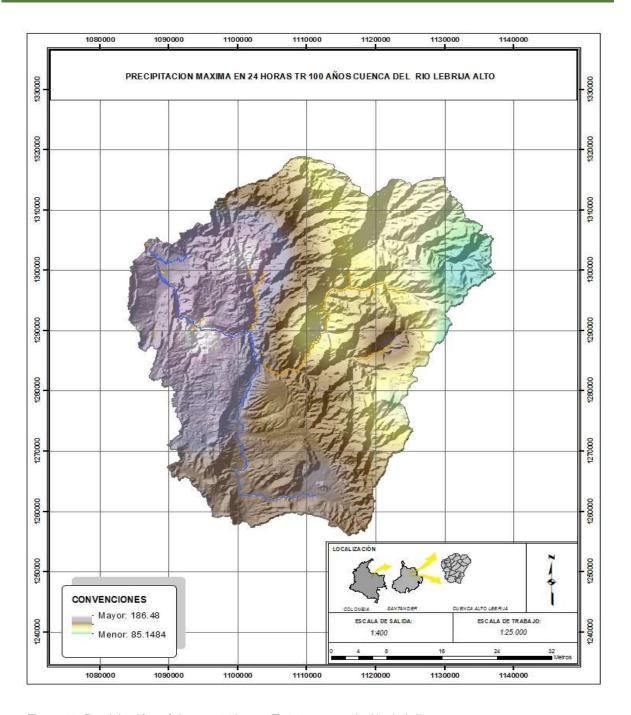
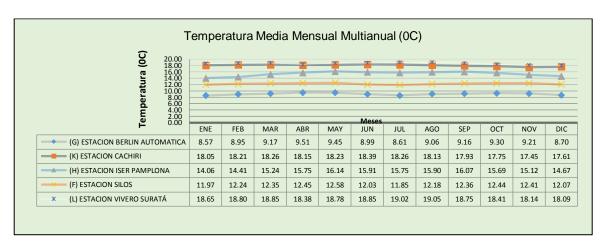
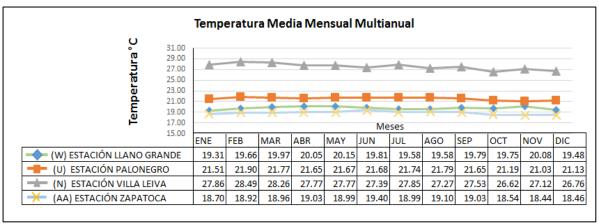


Figura 23. Precipitación máxima en 24 horas. Tr 100 cuenca rio Alto Lebrija.

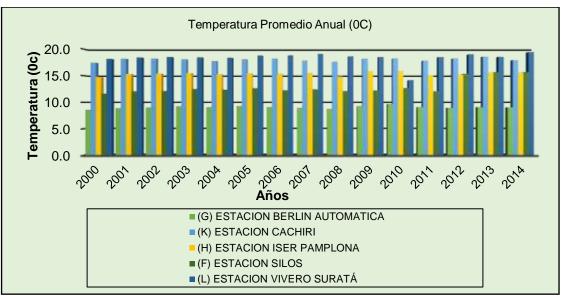

6.3 Temperatura

A partir de la información registrada en las estaciones climatológicas localizadas en la cuenca Alto Lebrija, se realizó el análisis del comportamiento temporal y espacial de las temperaturas medias, máximas y mínimas.



6.3.1 Temperatura media mensual multianual

La temperatura media anual reportada en las estaciones analizadas, muestran un comportamiento homogéneo en la cuenca. La estación Berlín automática ubicada en la parte sureste de la cuenca, presenta los valores más bajos de temperatura como se muestra en la Gráfica 8, con valores que oscilan entre los 8.6 y 9.4 °C; por el contrario, los registros más altos de temperatura se ubican las estaciones Vivero Surata, Cachiri y Villa Leiva, las cuales se encuentran en la zona norte de la cuenca. En las Gráficas 9 y 10 se presentan las temperaturas medias multianuales reportadas en las estaciones en la cuenca Alto Lebrija.



Gráfica 8. Histograma Temperatura media Mensual Multianual (°C). Fuente: Unión Temporal POMCA Río Lebrija Alto 2015.

Gráfica 9. Histograma Temperatura media Mensual Multianual (°C). Fuente: Unión Temporal POMCA Río Lebrija Alto 2015

Gráfica 10. Histograma Temperatura media Anual (°C). Fuente: Unión Temporal POMCA Río Lebrija Alto 2015.

Hacia la parte alta los valores medios de temperatura oscilan entre 9°C y 16°C. A medida que se va descendiendo la temperatura aumenta hasta alcanzar los 23,02 °C. (ver Figura 24)

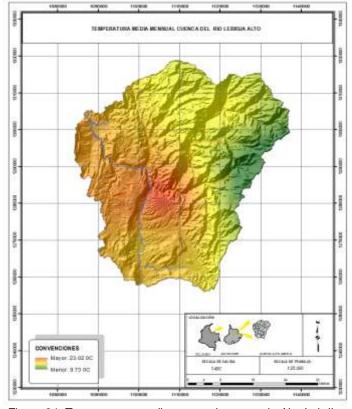
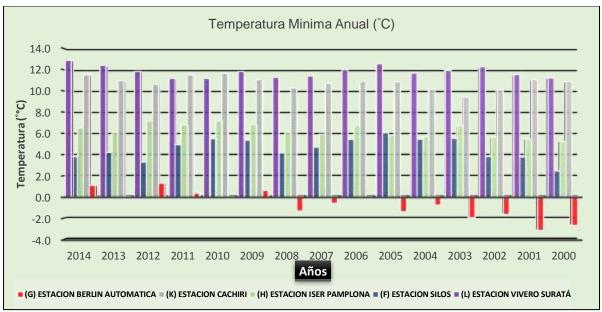
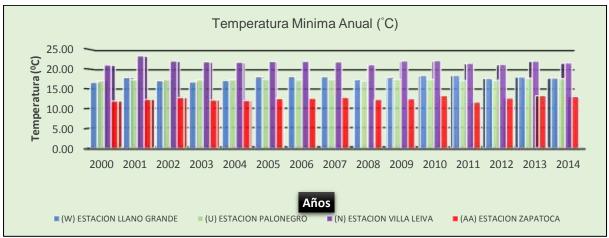



Figura 24. Temperatura media mensual cuenca rio Alto Lebrija.



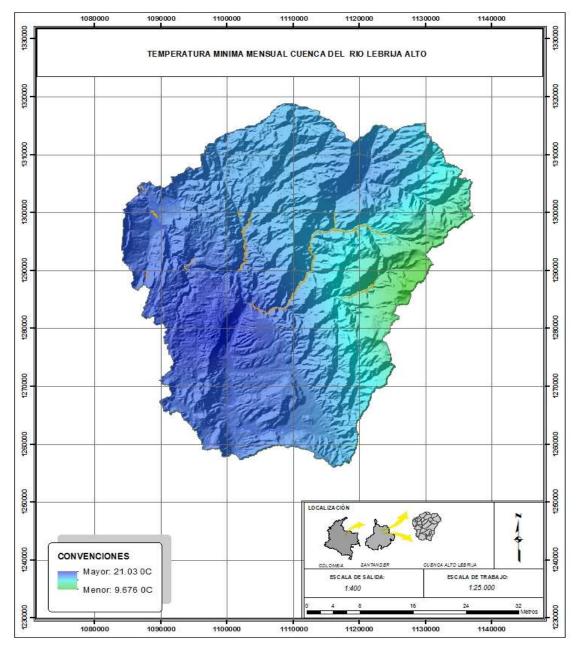
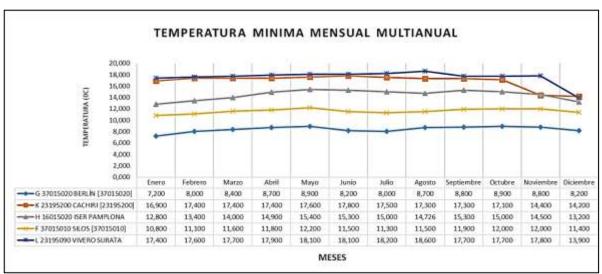
6.3.2 Temperatura mínima mensual multianual

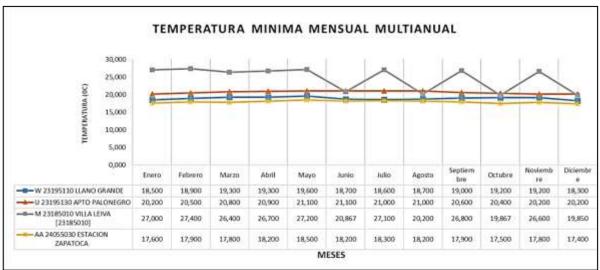
Los valores más bajos de temperatura los presenta la estación automática de Berlín ubicada en la parte sureste de la cuenca, con registros entre los -3.1 y 1.3 °C, como se muestra en la Gráfica 11. Por el contrario, los valores más altos de temperatura se presentan en las estaciones Vivero Surata, Cachiri y Villa Leiva, localizadas en la zona norte de la cuenca. (ver Gráfica 12).

Gráfica 11. Histograma Temperatura Mínima Anual (°C). Fuente: Unión Temporal POMCA Río Lebrija Alto 2015.

Gráfica 12. Histograma Temperatura Mínima Anual (°C). Fuente: Unión Temporal POMCA Río Lebrija Alto 2015.

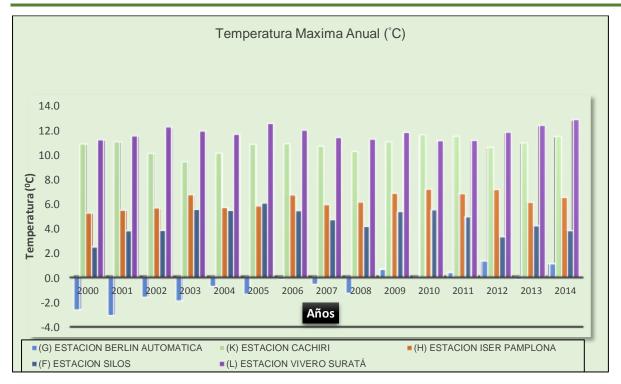
Así mismo, en la Figura 25 se puede observar la isoyeta para la regionalizar la temperatura mínima mensual multianual de la cuenca alto Lebrija.

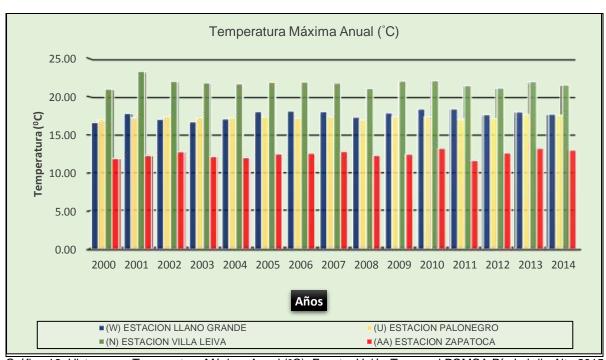

Figura 25. Temperatura mínima mensual cuenca rio Alto Lebrija.

En las Gráficas 13 y 14, se representan las temperaturas mínimas registradas en las estaciones analizadas

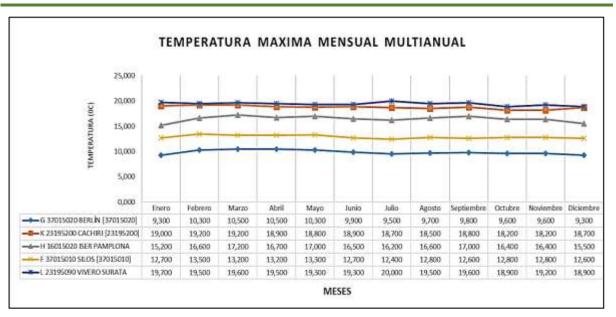
Gráfica 13. Temperatura mínima Mensual Multianual.

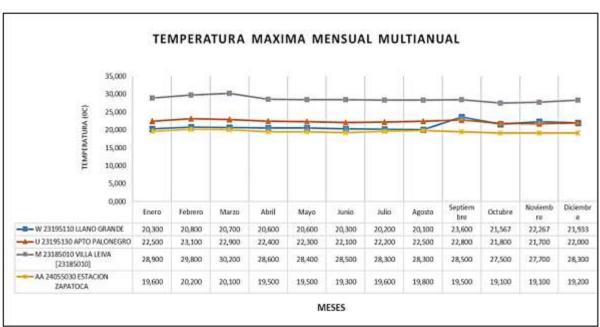


Gráfica 14. Temperatura mínima Mensual Multianual.


6.3.3 Temperatura máxima mensual multianual

La temperatura Máxima anual reportada en las estaciones elegidas, muestran un comportamiento similar en la cuenca. La estación automática de Berlín ubicada en la parte sureste de la cuenca, muestra valores de temperatura que oscilan entre los 15.7 y 16.9 °C y los valores más altos de temperatura se presentan en las estaciones Vivero Surata, Cachiri y Villa Leiva, las cuales hacen parte de la zona norte de la cuenca. (ver Gráficas 15 y 16)


Gráfica 15. Histograma Temperatura Máxima Anual (°C). Fuente: Unión Temporal POMCA Río Lebrija Alto 2015.


Gráfica 16. Histograma Temperatura Máxima Anual (°C). Fuente: Unión Temporal POMCA Río Lebrija Alto 2015.

En las Gráficas 17 y 18 se detallan los datos de la temperatura máxima multianual en las estaciones elegidas en la Cuenca Alto Lebrija.

Gráfica 17. Temperatura máxima mensual multianual

Gráfica 18. Temperatura máxima mensual multianual.

La temperatura es una variable importante y de gran peso en la caracterización de una región. En el sector alto donde la temperatura media oscila entre 10 y 17°C, se establece como la zona más fresca en términos de sensación térmica; en general, la cuenca mantiene en promedio la temperatura por encima de los 23°C.

Los valores máximos de la temperatura se visualizan en la Figura 26. con la zona más caliente situada en la parte sur de la zona de estudio.

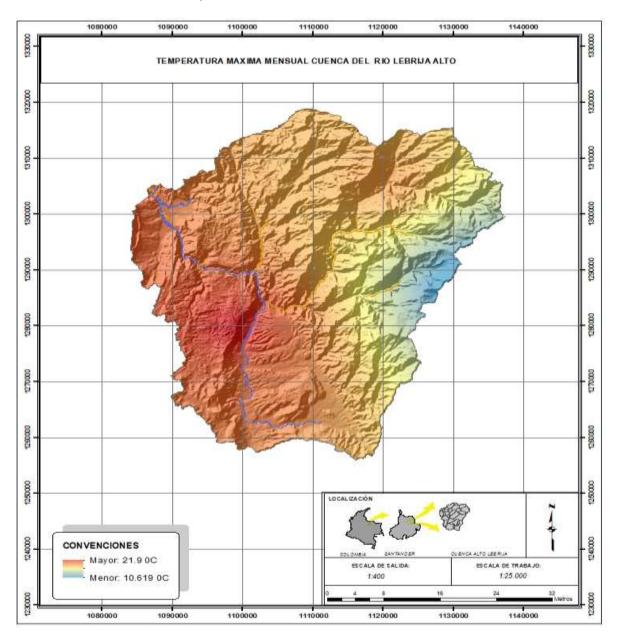


Figura 26. Temperatura máxima mensual cuenca Alto Lebrija.

Las Figuras 27 y 28, muestran las variaciones de la temperatura media mensual anual en la cuenca Alto Lebrija. Las temperaturas más bajas se presentan en los meses de diciembre, enero y julio.



Figura 27. Temperatura media mensual correspondiente a los meses enero a junio cuenca río Alto Lebrija.

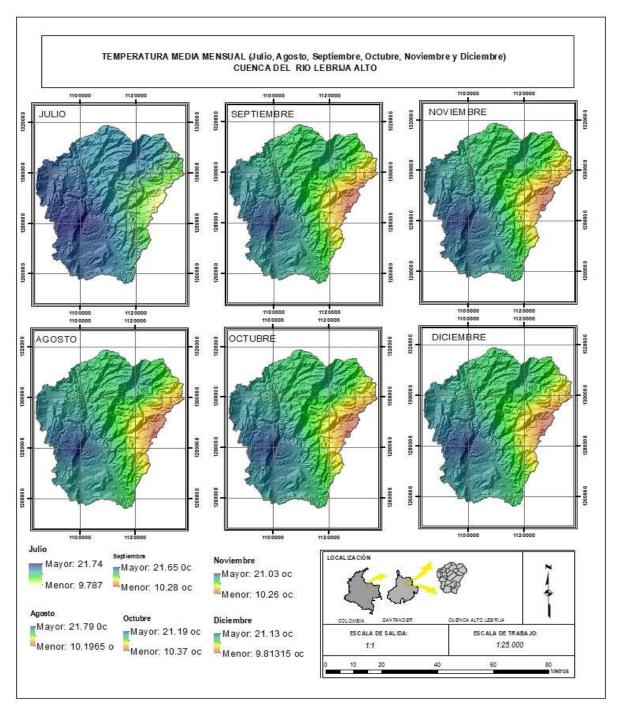
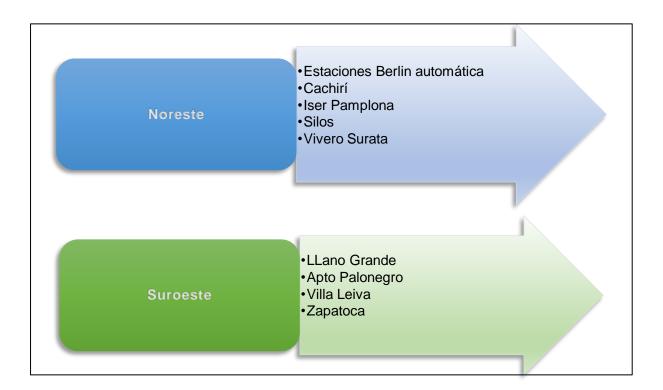


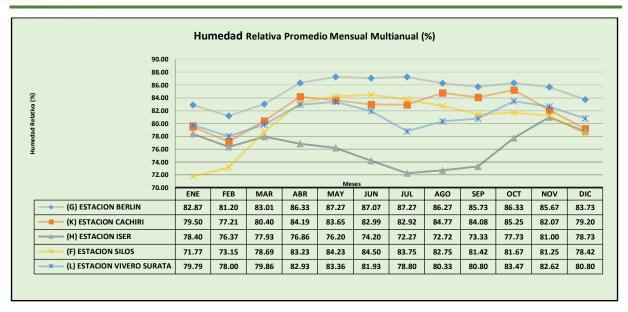
Figura 28. Temperatura media mensual concerniente a los meses julio a diciembre cuenca rio Alto Lebrija.

Teniendo en cuenta que la temperatura es una variable significativa para la zona de estudio, se puede concluir que: La zona más fresca en términos de sensación térmica se encuentra en la parte alta donde la temperatura media oscila entre 10 y 17°C, sin embargo, la cuenca mantiene en promedio la temperatura por encima de los 23°C.

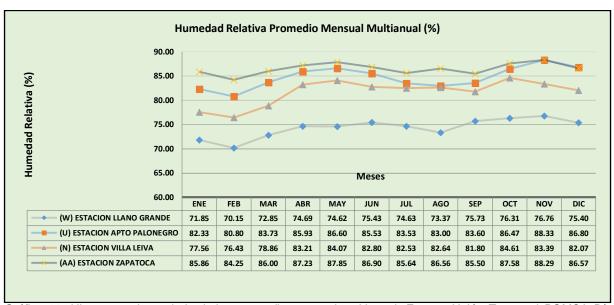


6.4 Humedad relativa

La variación de la humedad relativa en la zona, está en relación inversa con el comportamiento temporal y estacional de la temperatura ambiente.


6.4.1 Distribución temporal

Para determinar la variable de humedad relativa, se tomó como muestra las estaciones climatológicas cercanas a la cuenca alta del Rio Lebrija, las cuales se distribuyen de la siguiente manera:



El comportamiento de la Humedad relativa en el trascurso de un año, se representa en las Gráficas 19 y 20 mostrando similitud en la serie de datos.

Gráfica 19. Histograma humedad relativa promedio mensual multianual. Fuente: Unión Temporal POMCA.

Gráfica 20. Histograma humedad relativa promedio mensual multianual. Fuente: Unión Temporal POMCA Río Lebrija Alto 2015.

Los valores de humedad relativa en las estaciones, no superan una variación mayor del 10% mensual en el periodo húmedo; no obstante, en el periodo seco supera escasamente el 10%, por lo tanto, es posible identificar cuales periodos del año registran menor o mayor humedad relativa ya que coinciden con los periodos de lluvias y los periodos secos. Por consiguiente, a mayor precipitación, mayor humedad y viceversa.

6.4.2 Distribución espacial

La humedad relativa media mensual para cada una de las estaciones seleccionadas en el área de la cuenca Alto Lebrija se muestran constantes. En la parte norte de la cuenca se registra alta, mientras que en la parte sur es relativamente baja. (ver Figura 29)

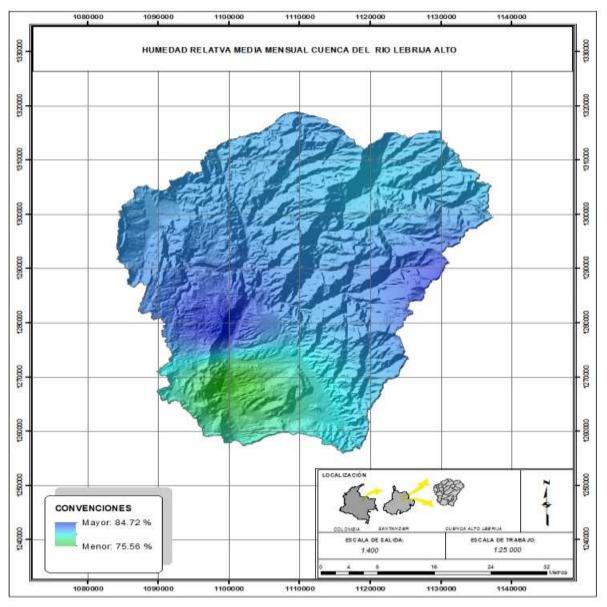


Figura 29. Humedad relativa media mensual cuenca rio Alto Lebrija

Con relación a la humedad relativa máxima en el área de estudio se observa una incidencia de mayor humedad en la zona norte de la cuenca. (ver Figura 30)

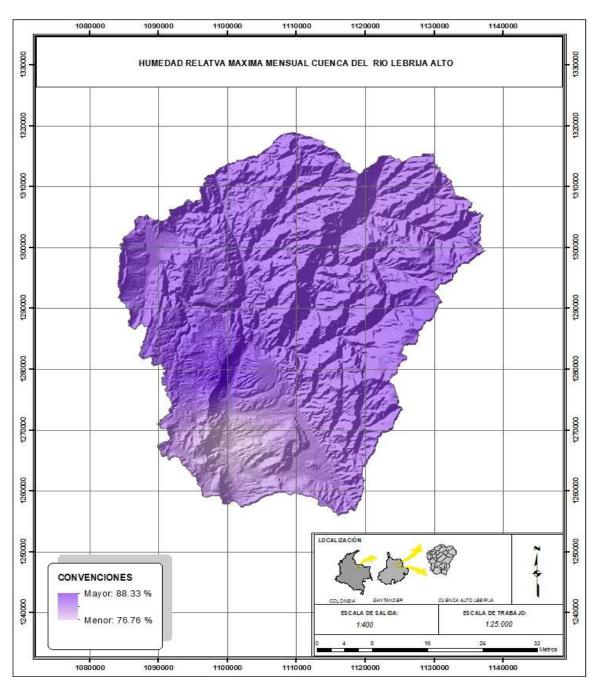


Figura 30. Humedad relativa máxima mensual cuenca rio Alto Lebrija.

En la Figura 31, se advierte que la humedad relativa mínima predomina en la zona norte comparado con la zona sur de la cuenca.

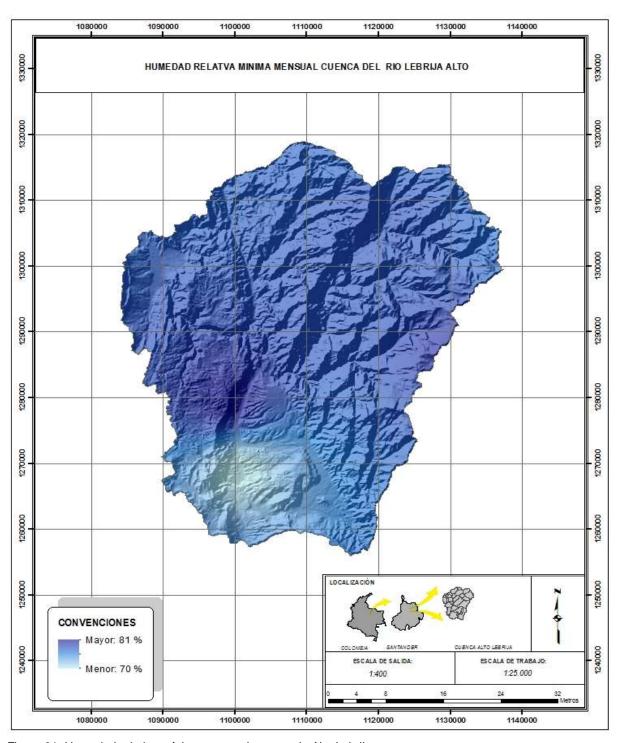
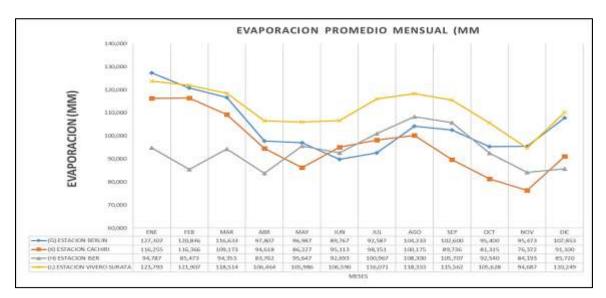


Figura 31. Humedad relativa mínima mensual cuenca rio Alto Lebrija


6.5 Evaporación

6.5.1 Distribución temporal

Esta variable depende del comportamiento de la precipitación y la temperatura durante el año. Las estaciones seleccionadas que refieren este parámetro permiten evidenciar muy poca variación que se revela en los periodos secos y húmedos sobre la cuenca.

Las estaciones que poseen evaporación en sus parámetros de medida son Berlín Automática, Cachiri, Iser Pamplona, Vivero Surata, Apto Palonegro, Villa Leiva y Zapatoca, se toman como referencia. (ver Gráficas 21 y 22)

Gráfica 21. Diagrama lineal de evaporación promedio mensual.

Gráfica 22. Diagrama lineal de evaporación promedio mensual.

6.5.2 Distribución espacial

Espacialmente, se observa un aumento en los valores de la evaporación media mensual, a medida que se desciende en altura en la cuenca ya que se incrementan las temperaturas. Por consiguiente, los registros de evaporación son más altos en la parte suroeste que los registros de la parte norte. (ver Figura 32)

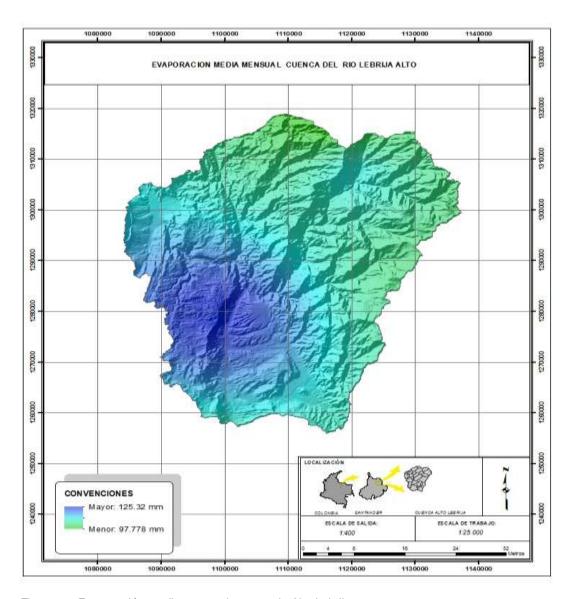


Figura 32. Evaporación media mensual cuenca rio Alto Lebrija.

La evaporación, tiene un comportamiento homogéneo en cuenta Alta del rio Lebrija, sin embargo, las máximas evaporaciones se ocasionan en la zona sur de la cuenca. (ver Figura 33)

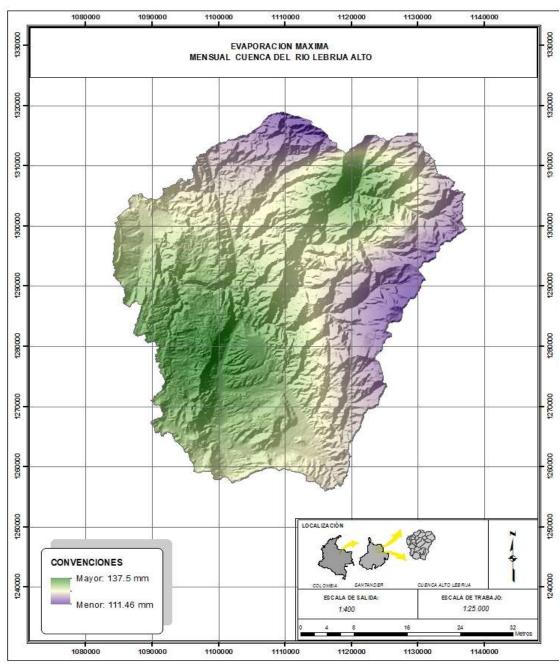


Figura 33. Evaporación máxima mensual cuenca rio Alto Lebrija.

En la Figura 34 se presenta la forma de distribución espacial de la evaporación mínima mensual registrada, observando la mínima evaporación al norte de la cuenca.

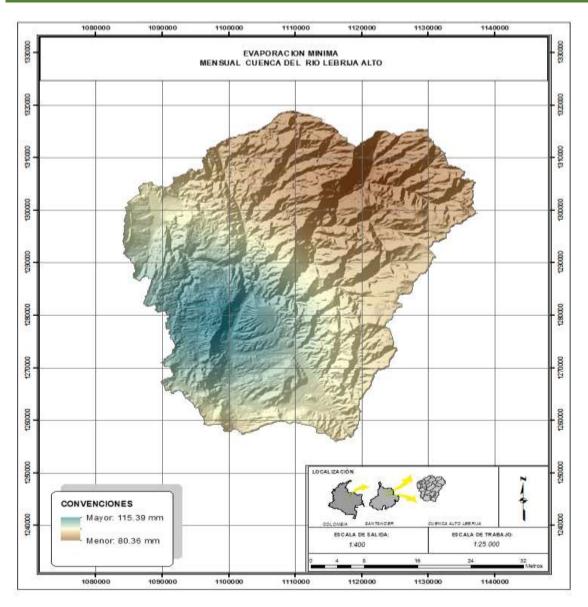
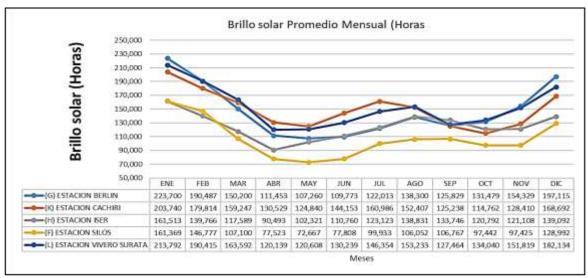


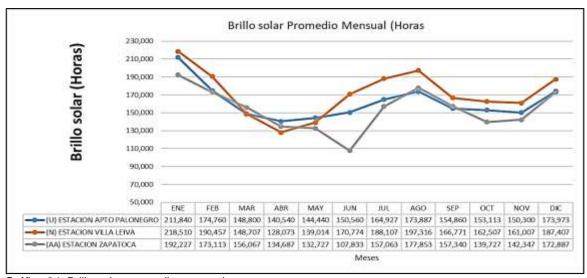
Figura 34. Evaporación mínima mensual Cuenca Alto Lebrija

6.6 Brillo solar

El brillo solar o heliofanía en horas, representa el tiempo total durante el cual incide luz solar directa sobre alguna localidad, entre el alba y el atardecer.


6.6.1 Distribución temporal

El brillo solar incide directamente en la evaporación, especialmente en los meses de diciembre y enero, que corresponde al periodo seco en el cual se alcanzan un poco



más de 223 horas de sol al mes. Por otra parte, en el periodo lluvioso comprendido por los meses de abril y noviembre, las horas de sol se reducen 72 horas al mes. Lo anterior, permite concluir que en los meses secos se presentan los mayores valores de brillo solar. (ver Gráficas 23 y 24).

El análisis del brillo solar promedio mensual se realizó con las estaciones Berlín Automática, Cachiri, Iser pamplona, Silos y Vivero Surata, que tienen incidencia por la zona norte y las estaciones de Apto Palonegro, Villa Leiva y Zapatoca en la zona sur de la Cuenca Alto Lebrija.

Gráfica 23. Brillo solar promedio mensual.

Gráfica 24. Brillo solar promedio mensual.

6.6.2 Distribución espacial

En el suroeste se presentan valores promedio mensuales de brillo solar de la cuenca alto Lebrija como se observa en el mapa de la Figura 35.

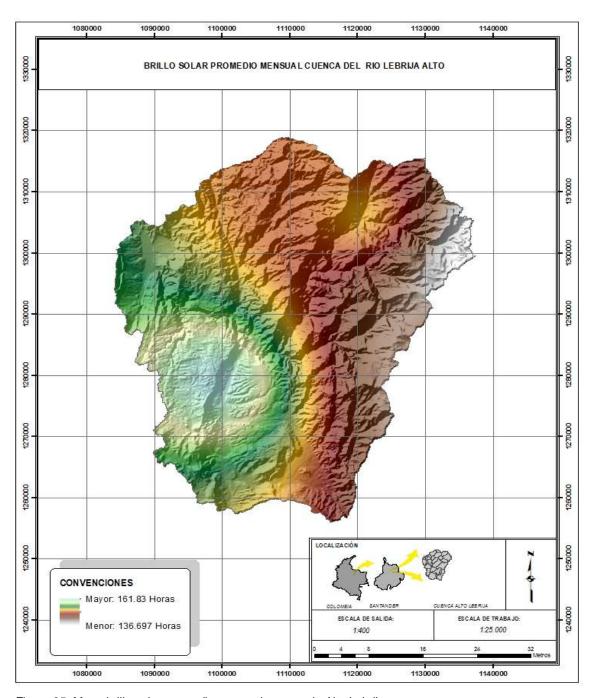


Figura 35. Mapa brillo solar promedio mensual cuenca rio Alto Lebrija.

La distribución espacial del brillo solar máxima y mínimo mensual, se muestran en las Figuras 36 y 37 respectivamente.

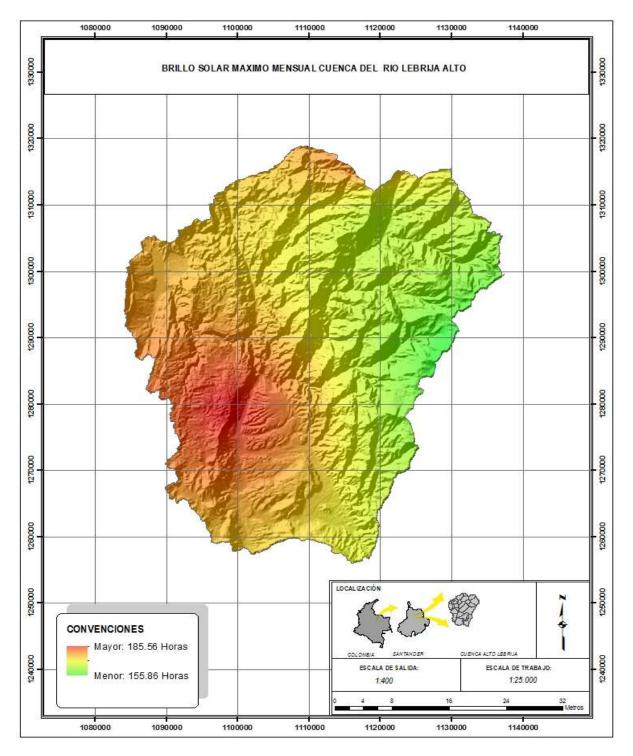


Figura 36. Mapa brillo solar máximo mensual cuenca rio Alto Lebrija.

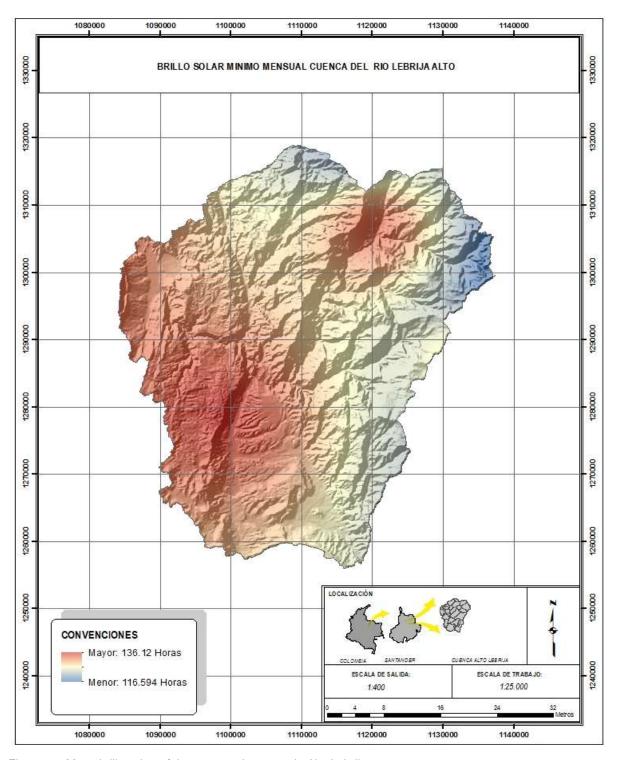


Figura 37. Mapa brillo solar mínimo mensual cuenca rio Alto Lebrija.

6.7 Evapotranspiración

6.7.1 Evapotranspiración potencial (ETP)

La Evapotranspiración Potencial (ETP) es un importante elemento del balance hídrico por cuanto determina al conjunto de pérdidas físicas (evaporación) y biológicas (transpiración de las plantas) del suelo en vapor de agua. Se expresa en mm por unidad de tiempo.

Para el cálculo de la ETP en la zona de estudio, se utilizó la metodología ya mencionada en el documento en el ítem 5.1.15. En la Tabla 25, se presenta los resultados del cálculo de índice de calor mensual a partir de la temperatura media mensual con la Ecuación 9.

					Calcu	ılo de i							
Código	Estaciones	Ene	Feb	Mar	Abr	May.	Jun	Jul	Ago	Sep	Oct	Nov	Dic
16015020	ISER PAMPLONA	4,78	4,97	5,41	5,68	5,90	5,77	5,68	5,76	5,86	5,65	5,34	5,10
23185010	VILLA LEIVA	13,47	13,94	13,77	13,41	13,41	13,13	13,46	13,05	13,23	12,58	12,93	12,67
23195090	VIVERO SURATA	7,34	7,43	7,46	7,18	7,41	7,46	7,56	7,58	7,40	7,19	7,03	7,00
23195110	LLANO GRANDE	7,73	7,95	8,14	8,19	8,25	8,04	7,90	7,90	8,03	8,01	8,21	7,84
23195130	APTO PALONEGRO	9,10	9,36	9,28	9,19	9,21	9,22	9,25	9,29	9,19	8,90	8,80	8,86
23195200	CACHIRI	6,99	7,08	7,11	7,04	7,09	7,18	7,11	7,03	6,91	6,81	6,64	6,73
37015010	SILOS	3,75	3,88	3,93	3,98	4,04	3,78	3,69	3,85	3,94	3,98	3,96	3,80
37015020	BERLÍN	2,26	2,42	2,50	2,65	2,62	2,43	2,28	2,46	2,50	2,56	2,52	2,31
24055030	ZAPATOCA	7,37	7,50	7,52	7,57	7,54	7,57	7,54	7,61	7,56	7,27	7,21	7,22

Tabla 25. Resultados del índice de calor mensual

En la Tabla 26, se muestran los resultados del cálculo de índice de calor anual calculadas con las Ecuaciones 11 y 8 (I, a) respectivamente.

Código	Estaciones	I Total –Ecuación 11	a -Ecuación 8
16015020	ISER PAMPLONA	65,89	1,53
23185010	VILLA LEIVA [23185010]	159,06	4,11
23195090	VIVERO SURATA	88,04	1,93
23195110	LLANO GRANDE	96,17	2,10
23195130	APTO PALONEGRO	109,67	2,42
23195200	CACHIRI [23195200]	83,71	1,85
37015010	SILOS [37015010]	46,57	1,23
37015020	BERLÍN [37015020]	29,51	0,97
24055030	ZAPATOCA	89,49	1,96

Tabla 26. Resultados índices de calor anual (I y a)

Los resultados del cálculo de la evapotranspiración potencial ETP, sin corregir con respecto a la Ecuación 7, se presentan en la Tabla 27.

			E	TP Sin C	orregir								
Código	Estaciones	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
16015020	ISER PAMPLONA	51,08	53,06	57,79	60,76	63,10	61,71	60,80	61,68	62,66	60,40	57,09	54,49
23185010	VILLA LEIVA [23185010]	160,03	175,51	169,68	158,00	158,00	149,25	159,72	146,63	152,46	132,82	143,27	135,55
23195090	VIVERO SURATA	68,28	69,35	69,70	66,41	69,19	69,70	70,93	71,12	69,01	66,57	64,69	64,35
23195110	LLANO GRANDE	69,29	71,99	74,38	75,04	75,77	73,12	71,35	71,35	73,01	72,71	75,28	70,61
23195130	APTO PALONEGRO	81,69	85,35	84,16	82,98	83,23	83,29	83,85	84,35	82,98	78,78	77,40	78,24
23195200	CACHIRI [23195200]	66,22	67,31	67,63	66,90	67,45	68,50	67,63	66,72	65,37	64,16	62,21	63,27
37015010	SILOS [37015010]	50,99	52,40	53,01	53,54	54,19	51,33	50,37	52,07	53,04	53,48	53,30	51,50
37015020	BERLÍN [37015020]	45,06	47,03	48,12	49,85	49,55	47,23	45,29	47,57	48,08	48,80	48,32	45,74
24055030	ZAPATOCA	67,95	69,53	69,82	70,35	70,01	70,40	70,06	70,83	70,30	66,82	66,11	66,23

Tabla 27. Resultados de ETP sin corregir

En la Tabla 28 se relacionan los resultados del cálculo a evapotranspiración potencial corregido con respecto a la Ecuación 9.

					ETP Cor	egido							
Código	Estaciones	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
16015020	ISER PAMPLONA	31,41	25,45	30,72	27,41	28,80	24,58	27,07	30,92	29,48	27,94	26,45	30,76
23185010	VILLA LEIVA [23185010]	124,25	108,96	101,39	81,81	89,36	86,11	109,94	93,68	91,73	82,35	78,96	103,02
23195090	VIVERO SURATA	46,49	43,26	41,65	31,84	36,17	30,59	37,40	37,67	33,09	32,23	35,49	43,17
23195110	LLANO GRANDE	47,18	44,91	44,44	35,98	39,61	32,09	37,62	37,80	35,00	35,20	41,30	47,37
23195130	APTO PALONEGRO	60,97	53,01	47,60	39,37	46,17	41,83	48,05	48,34	47,53	43,00	42,68	52,37
23195200	CACHIRI [23195200]	45,66	42,97	47,36	35,35	34,75	36,86	40,80	36,88	33,14	27,87	32,04	39,19
37015010	SILOS [37015010]	32,32	28,74	28,86	20,61	19,40	13,40	17,00	18,53	19,77	19,27	19,42	31,59
37015020	BERLÍN [37015020]	35,78	32,63	33,67	21,39	21,47	19,38	22,12	23,30	26,21	22,84	27,57	32,36
24055030	ZAPATOCA	47,59	42,82	40,86	31,34	35,14	32,97	40,97	42,76	42,06	34,86	33,77	43,51

Tabla 28. Resultados de ETP corregidos

La Figura 38, evidencia la cuenca con los valores de ETP; Anexo 7 (POMCA Alto Lebrija).

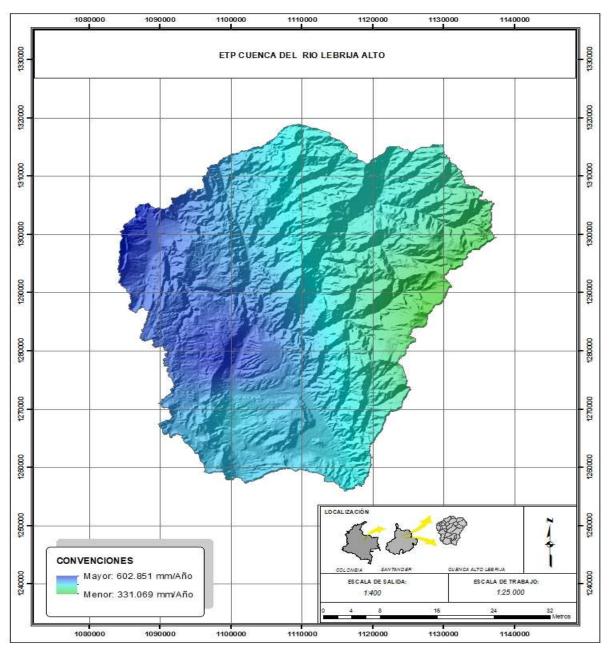


Figura 38. ETP mensual cuenca rio Alto Lebrija.

Los valores de ETP, correspondiente a los meses del primer semestre del año, se observan en la Figura 39.

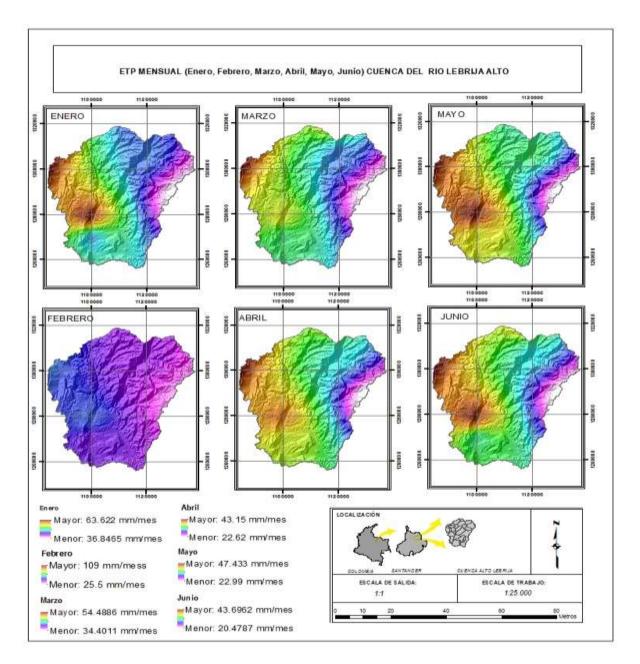


Figura 39. ETP mensual (enero-junio) cuenca rio Alto Lebrija.

Los valores de ETP, correspondiente a los meses del segundo semestre del año, se presentan en la Figura 40.

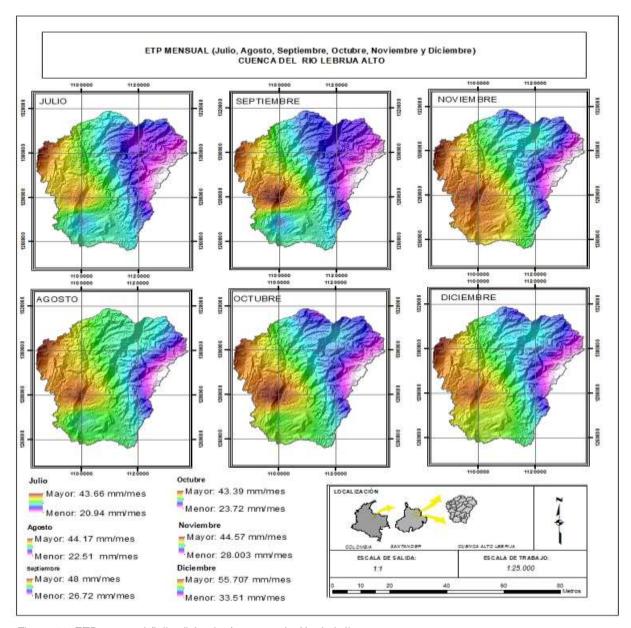


Figura 40. ETP mensual (julio-diciembre) cuenca rio Alto Lebrija.

6.7.2 Evapotranspiración real (ETR)

Para el cálculo de la ETR en la zona de estudio, se utilizó la metodología ya mencionada en el documento numeral 5.1.14.

Los resultados del cálculo a evapotranspiración real con respecto a la Ecuación 6, se detallan en la Tabla 29.

			C	Calculo E	ETR (Ecu	iación 5							
Código	Estaciones	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
16015020	ISER PAMPLONA	22,79	20,39	27,42	26,06	27,04	22,46	24,06	27,45	27,27	26,61	24,81	22,22
23185010	VILLA LEIVA [23185010]	45,29	59,99	88,59	76,51	83,34	78,81	96,39	85,50	84,24	78,35	74,46	78,34
23195090	VIVERO SURATA	27,72	29,04	37,22	30,38	33,81	26,24	26,13	32,94	31,11	30,89	33,35	33,04
23195110	LLANO GRANDE	28,89	39,78	39,61	31,48	36,05	29,19	29,58	33,06	31,70	32,86	36,58	19,35
23195130	APTO PALONEGRO	44,58	47,13	42,88	35,81	42,09	36,66	38,79	41,51	41,21	40,66	39,55	43,08
23195200	CACHIRI [23195200]	16,31	18,69	38,00	33,22	32,89	32,01	30,94	33,62	31,33	26,85	30,15	28,30
37015010	SILOS [37015010]	13,38	20,44	24,79	19,65	18,56	12,98	16,24	17,63	18,83	18,35	18,26	18,87
37015020	BERLÍN [37015020]	13,25	19,41	25,83	20,08	20,19	18,02	20,06	21,41	24,32	21,58	24,45	14,31
24055030	ZAPATOCA	39,21	39,17	37,82	29,22	33,18	30,72	35,77	38,38	37,95	33,09	31,67	31,71

Tabla 29. Resultados del cálculo de la ETR

En la demarcación hidrográfica de la Cuenca Alto Lebrija, la Evapotranspiración Real (ETR), se distribuye de acuerdo a las Figuras 41, 42 y 43.

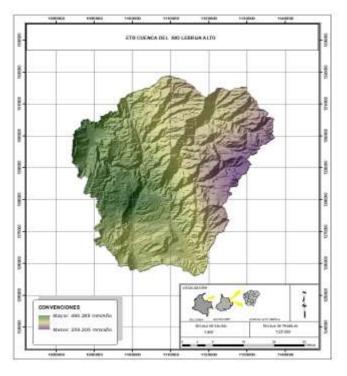


Figura 41. ETR anual cuenca rio Alto Lebrija.

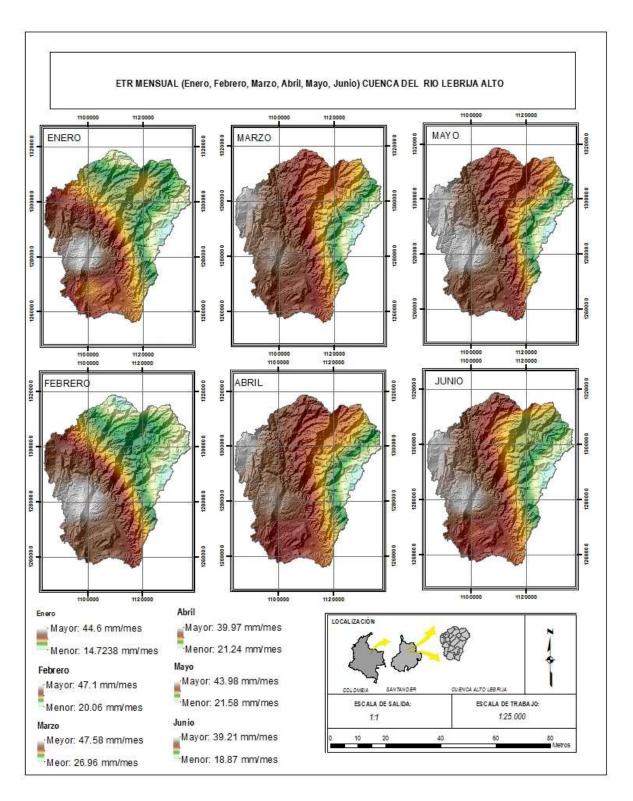


Figura 42. ETR mensual (enero – junio) cuenca rio Alto Lebrija.

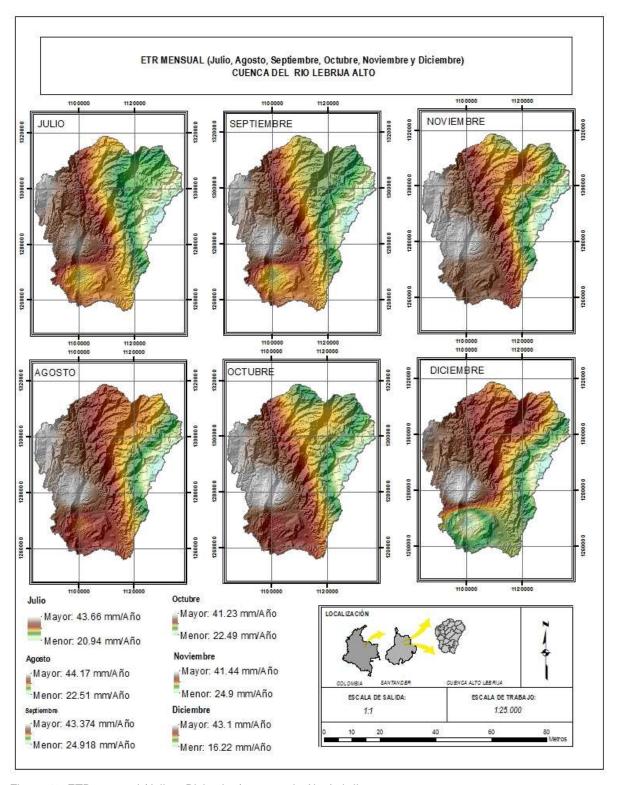
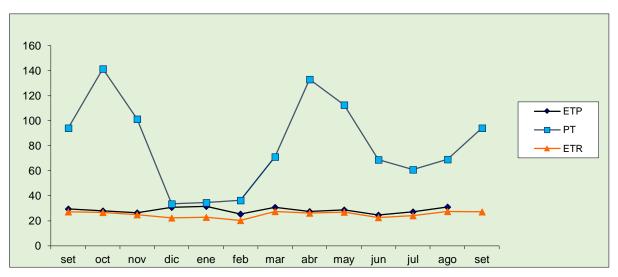


Figura 43. ETR mensual (Julio – Diciembre) cuenca rio Alto Lebrija.

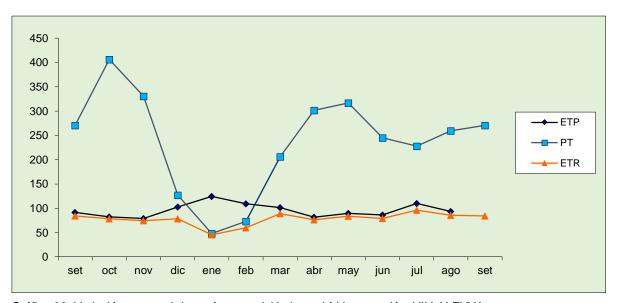

6.8 Balance hídrico

Se elaboró el balance hídrico de acuerdo a lo establecido en el numeral 5.1.11 para las nueve estaciones que miden la variable de temperatura media y precipitación. De igual forma, se realizó un balance hídrico espacio temporal con los mapas generados de precipitación y temperatura mensual en el área de la cuenca.

En las Tablas 30 - 38, se presentan los resultados del balance hídrico realizado para cada una de estas estaciones que tienen el parámetro de temperatura. Del mismo modo, las Gráficas 25 - 33, se muestran la variación temporal de las variables del balance hídrico para cada estación.

				Balan	ce híd	rico es	stación	: ISEF	R PAMF	PLONA					
Parámetro		set	oct	nov	dic	ene	feb	mar	abr	may	jun	jul	ago	set	Total
Р	P 94,1 141,6 101,4 33,5 34,6 36,4 71,2 133,2 112,7 68,9 61,0 69,1 94,1 957,7														
ETP corr.															
ETR		27,3	26,6	24,8	22,2	22,8	20,4	27,4	26,1	27,0	22,5	24,1	27,4	27,3	298,6
Déficit		2,2	1,3	1,6	8,5	8,6	5,1	3,3	1,4	1,8	2,1	3,0	3,5	2,2	42,4
Reserva	0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Excedentes		64,6	113,6	75,0	2,8	3,2	11,0	40,5	105,8	83,9	44,3	34,0	38,2	64,6	616,7
ESC		66,8	115,0	76,6	11,3	11,8	16,0	43,8	107,2	85,6	46,5	37,0	41,6	66,8	659,2

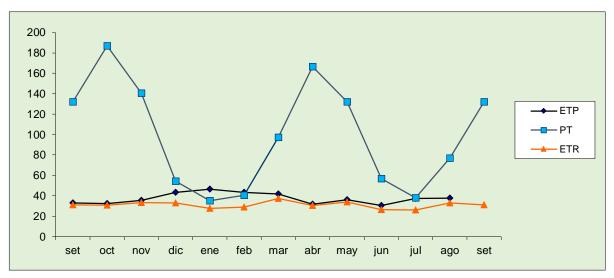
Tabla 30. Balance hídrico estación: ISER Pamplona.



Gráfica 25. Variación temporal de parámetros del balance hídrico estación. ISER Pamplona.

					Balanc	e hídric	co esta	ción: V	ILLALE	YVA					
Parámetro		set	oct	nov	dic	ene	feb	mar	abr	may	jun	jul	ago	set	Total
P		270,5	406.5	330,7	127,2	48,3	72,9	206,3	301,4	316,6	245,3	228.0	259,7	270,5	2813,3
•	ETP corr. 91,7 82,3 79,0 103,0 124,2 109,0 101,4 81,8 89,4 86,1 109,9 93,7 91,7 1151,5														
ETR		84,2	78,3	74,5	78,3	45,3	60,0	88,6	76,5	83,3	78,8	96,4	85,5	84,2	929,8
Déficit		7,5	4,0	4,5	24,7	79,0	49,0	12,8	5,3	6,0	7,3	13,5	8,2	7,5	221,8
Reserva	0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Excedentes		178,8	324,2	251,8	24,1	0,0	0,0	104,9	219,6	227,2	159,2	118,0	166,0	178,8	1773,8
ESC		186,2	328,2	256,3	48,8	3,0	12,9	117,7	224,9	233,3	166,4	131,6	174,2	186,2	1883,5

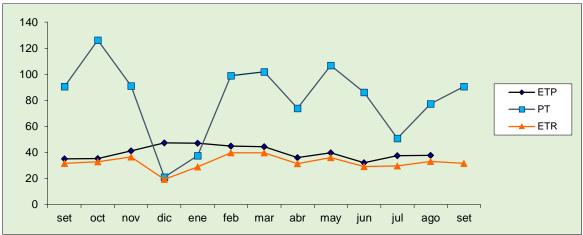
Tabla 31. Balance hídrico estación: VILLA DE LEYVA


Gráfica 26. Variación temporal de parámetros del balance hídrico estación. VILLALEYVA.

				Balan	ce híd	Irico es	stació	n: VIVE	ERO SI	JRATA					
Parámetro set oct nov dic ene feb mar abr may jun jul ago set Total															
Р															
ETP corr.		33,1	32,2	35,5	43,2	46,5	43,3	41,6	31,8	36,2	30,6	37,4	37,7	33,1	449,0
ETR		31,1	30,9	33,3	33,0	27,7	29,0	37,2	30,4	33,8	26,2	26,1	32,9	31,1	371,9
Déficit		2,0	1,3	2,1	10,1	18,8	14,2	4,4	1,5	2,4	4,3	11,3	4,7	2,0	77,2

				Balan	ce híd	Irico es	stació	n: VIVE	ERO SI	JRATA					
Parámetro set oct nov dic ene feb mar abr may jun jul ago set Total															
Reserva															
Excedentes		98,9	154,6	105,1	11,0	0,0	0,0	55,7	134,8	95,9	26,1	0,5	39,3	98,9	721,9
ESC		100,9	155,9	107,2	21,1	7,5	11,5	60,1	136,2	98,2	30,5	11,8	44,0	100,9	785,1

Tabla 32. Balance hídrico estación: VIVERO SURATA



Gráfica 27. Variación temporal de parámetros del balance hídrico estación. VIVERO SURATA

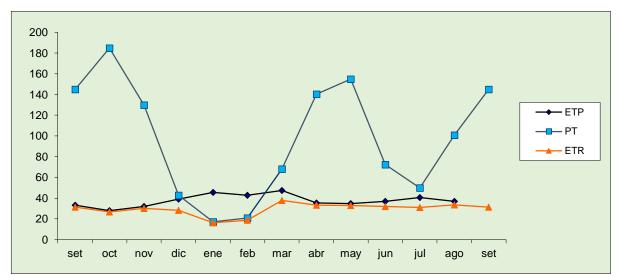
				Bala	ance hi	ídrico e	estació	n: LLAN	NOGRA	ANDE					
Parámetro		set	oct	nov	dic	ene	feb	mar	abr	may	jun	jul	ago	set	Total
Р		90,7	126,2	91,0	21,1	37,4	99,0	102,0	73,8	106,9	86,2	50,9	77,4	90,7	962,5
ETP corr.	53,2 41,3 41,4 41,2 44,3 44,4 30,0 35,0 32,1 31,0 31,0 33,0 410,3														
ETR		31,7	32,9	36,6	19,3	28,9	39,8	39,6	31,5	36,0	29,2	29,6	33,1	31,7	388,1
Déficit		3,3	2,3	4,7	28,0	18,3	5,1	4,8	4,5	3,6	2,9	8,0	4,7	3,3	90,4
Reserva	0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Excedentes		55,7	91,0	49,8	0,0	0,0	54,0	57,6	37,8	67,2	54,1	13,3	39,6	55,7	520,0
ESC		59,0	93,3	54,5	1,8	8,5	59,2	62,4	42,3	70,8	57,0	21,3	44,3	59,0	574,4

Tabla 33. Balance hídrico estación: LLANOGRANDE

Gráfica 28. Variación temporal de parámetros del balance hídrico estación. LLANOGRANDE.

				В	alance	hídric	o estac	ión: PA	LONEG	RO					
Parámetro		set	oct	nov	dic	ene	feb	mar	abr	may	jun	jul	ago	set	Total
Р		92,8	189,5	139,3	81,9	68,4	119,6	118,1	105,7	126,6	86,6	70,5	90,1	92,8	1289,0
ETP corr.	ETD 41.2														
ETR		41,2	40,7	39,6	43,1	44,6	47,1	42,9	35,8	42,1	36,7	38,8	41,5	41,2	493,9
Déficit		6,3	2,3	3,1	9,3	16,4	5,9	4,7	3,6	4,1	5,2	9,3	6,8	6,3	77,0
Reserva	0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Excedentes		45,3	146,5	96,6	29,5	7,4	66,6	70,5	66,4	80,4	44,8	22,4	41,8	45,3	718,0
ESC		51,6	148,8	99,7	38,8	23,8	72,5	75,2	69,9	84,5	49,9	31,7	48,6	51,6	795,0

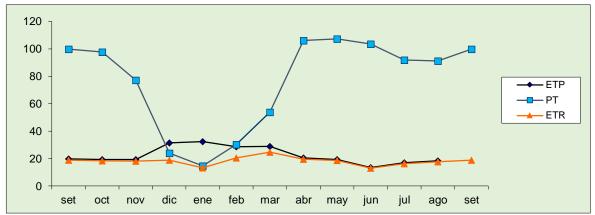
Tabla 34. Balance hídrico estación: PALONEGRO



Gráfica 29. Variación temporal de parámetros del balance hídrico estación PALONEGRO

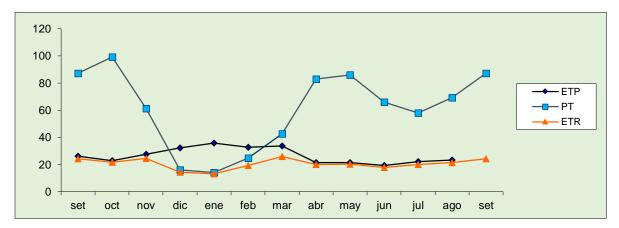
				В	alanc	e hídri	co est	ación:	CACHI	RI					
Parámetro		set	oct	nov	dic	ene	feb	mar	abr	may	jun	jul	ago	set	Total
Р															
ETP corr.															
ETR		31,3	26,9	30,2	28,3	16,3	18,7	38,0	33,2	32,9	32,0	30,9	33,6	31,3	352,3
Déficit		1,8	1,0	1,9	10,9	29,4	24,3	9,4	2,1	1,9	4,8	9,9	3,3	1,8	100,6
Reserva	0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Excedentes		111,9	156,9	97,7	3,5	0,0	0,0	20,8	105,1	120,0	35,7	9,2	64,1	111,9	725,0
ESC		113,7	158,0	99,6	14,4	1,0	2,1	30,1	107,2	121,9	40,6	19,1	67,4	113,7	775,0

Tabla 35. Balance hídrico estación: CACHIRI


Gráfica 30. Variación temporal de parámetros del balance hídrico estación CACHIRI.

	Balance hídrico estación: SILOS														
Parámetro	Parámetro set oct nov dic ene feb mar abr may jun jul ago set Total														
Р		99,7	97,7	77,2	24,0	14,7	30,3	53,8	106,1	107,4	103,6	91,9	91,2	99,7	897,7
ETP corr.		19,8	19,3	19,4	31,6	32,3	28,7	28,9	20,6	19,4	13,4	17,0	18,5	19,8	268,9
ETR		18,8	18,4	18,3	18,9	13,4	20,4	24,8	19,7	18,6	13,0	16,2	17,6	18,8	218,0
Déficit		0,9	0,9	1,2	12,7	18,9	8,3	4,1	1,0	0,8	0,4	0,8	0,9	0,9	50,9
Reserva	0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Excedentes		80,0	78,5	57,8	0,0	0,0	1,6	24,9	85,5	88,0	90,2	74,9	72,7	80,0	654,0

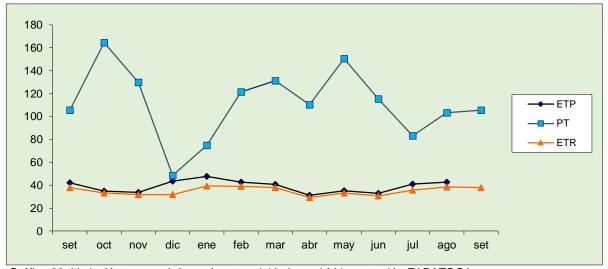
				Ва	lance h	nídrico	estació	n: SILC	os					
Parámetro	set	oct	nov	dic	ene	feb	mar	abr	may	jun	jul	ago	set	Total
ESC	80,9	79,4	58,9	5,2	1,3	9,9	29,0	86,5	88,8	90,7	75,6	73,6	80,9	679,7


Tabla 36. Balance hídrico estación: SILOS

Gráfica 31. Variación temporal de parámetros del balance hídrico estación SILOS

					D-1	1-1-1-1		:)						
	Balance hídrico estación: BERLIN														
Destructure and not not die one feb men ohn men in one in one of Take															Tatal
Parametro	Parámetro set oct nov dic ene feb mar abr may jun jul ago set Total														Total
Р		87,1	99,2	61,2	16,0	14,2	24,6	42,5	83,0	86,0	66,0	58,0	69,2	87,1	706,9
ETP corr.		26,2	22,8	27,6	32,4	35,8	32,6	33,7	21,4	21,5	19,4	22,1	23,3	26,2	318,7
ETR		24,3	21,6	24,4	14,3	13,2	19,4	25,8	20,1	20,2	18,0	20,1	21,4	24,3	242,9
Déficit		1,9	1,3	3,1	18,1	22,5	13,2	7,8	1,3	1,3	1,4	2,1	1,9	1,9	75,8
Reserva	0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Excedentes		60,9	76,4	33,6	0,0	0,0	0,0	8,9	61,6	64,5	46,6	35,8	45,9	60,9	434,2
ESC		62,8	77,6	36,8	1,6	0,9	5,2	16,7	62,9	65,8	48,0	37,9	47,7	62,8	464,0

Tabla 37. Balance hídrico estación: BERLIN



Gráfica 32. Variación temporal de parámetros del balance hídrico estación Berlin

				-	Ralanc	a hídri	co osta	ción: 7	ΛΡΛΤΩ	Λ					
	Balance hídrico estación: ZAPATOCA														
Parámetro	Parámetro sep oct nov dic ene feb mar abr may jun jul ago set Tota														
Р		105.6	164,6	129,8	48,4	74,9	121,3	131,2	110,2	150,4	115,2	83,1	103,3	105.6	1337,9
		,.	, .	,.	, .	,-	,-	,_	,_	,	,=	, -	,.	,.	,.
ETP corr.		42,1	34,9	33,8	43,5	47,6	42,8	40,9	31,3	35,1	33,0	41,0	42,8	42,1	468,6
ETR		38,0	33,1	31,7	31,7	39,2	39,2	37,8	29,2	33,2	30,7	35,8	38,4	38,0	417,9
Déficit		4,1	1,8	2,1	11,8	8,4	3,7	3,0	2,1	2,0	2,3	5,2	4,4	4,1	50,8
Reserva	0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Excedentes		63,6	129,7	96,0	4,9	27,3	78,5	90,3	78,8	115,2	82,2	42,1	60,5	63,6	869,2
ESC		67,7	131,5	98,1	16,7	35,6	82,2	93,4	81,0	117,2	84,5	47,3	64,9	67,7	920,0

Tabla 38. Balance hídrico estación: ZAPATOCA

Gráfica 33. Variación temporal de parámetros del balance hídrico estación ZAPATOCA

6.8.1 Balance hídrico de largo plazo

El balance hídrico de largo plazo estima de una forma muy general la respuesta hidrológica (déficit o exceso de agua) de un área de cuenca. Esta metodología simplifica el cálculo, al realizar una limitación temporal a una escala anual de largo plazo, lo que permite considerar que el tiempo es relativamente grande y la variación en el almacenamiento es prácticamente nula; por lo cual no se tiene en cuenta el almacenamiento ni la infiltración, y de este modo, estimar el escurrimiento superficial teniendo en cuenta solamente las entradas del sistema (precipitación) y las salidas del

sistema (evapotranspiración real), con lo cual la ecuación del cálculo de caudales a partir de balances hídricos de larga duración es la siguiente

Ecuación 21

$$S = (P - ETR)$$

Donde:

S: Escurrimiento [mm/año]

P: Precipitación [mm/año]

ETR: Evapotranspiración potencial [mm/año]

La cuenca del río Lebrija alto no presenta instrumentación de caudales; por lo cual no es posible validar los resultados obtenidos con este balance. Basados en los resultados del balance hídroclimático espacio temporal del numeral anterior, en la Figura 44, se presenta la especialización del balance hídrico de largo plazo.

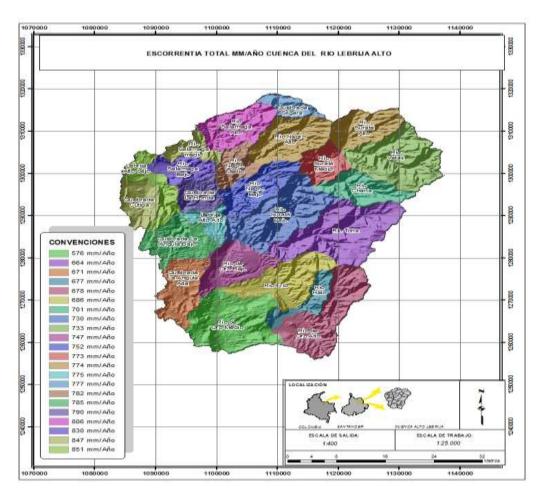


Figura 44. Balance hídrico de largo plazo mm/año

6.9 Determinación de los tipos de oferta

6.9.1 Oferta hídrica total superficial (OHTS)

Se calcula a partir de la serie histórica de caudales medidos seleccionados en las estaciones hidrológicas o a partir del modelo de lluvia-escorrentía. En este caso, se tuvo en cuenta el modelo lluvia-escorrentía que permite generar la oferta hídrica total (año normal), oferta hídrica total (lluvioso), oferta hídrica total (seco), para cada subcuenca Nivel II de la Cuenca Nivel I Alto Lebrija; teniendo en cuenta la estimación de caudales por medio de la ecuación propuesta en el numeral 5.4.1.4, a continuación, se referencian los resultados en la Tabla 39, de año normal.

_	atos nerales					Ofe	erta Hí	drica T	otal m	3/s (A	ño Noi	rmal)			
Microcuenca	Código Microcuenca	Área (Km2)	Q ener	Q feb	Q mar	Q abr	Q may	Q jun	Q jul	Q ago	Q sep	Q oct	Q nov	Q dic	То
Lebrija Alto Directos	2319-01-01-01	123,90	0,815	2,657	4,142	6,181	5,963	3,003	1,539	3,215	5,140	9,255	6,053	1,424	49,
Quebrada La Angula	2319-01-01-02	187,52	0,141	0,431	0,447	0,416	0,502	0,297	0,188	0,289	0,307	0,884	0,593	0,231	4,
Quebrada Lajas	2319-01-01-03	44,52	0,507	1,771	2,941	4,513	4,254	2,194	1,075	2,293	3,818	6,465	4,187	0,851	34
Quebrada aburrida	2319-01-01-04	32,09	0,024	0,074	0,077	0,071	0,086	0,051	0,032	0,049	0,052	0,151	0,101	0,039	0,
Quebrada La Honda	2319-01-01-05	50,45	0,038	0,116	0,120	0,112	0,135	0,080	0,051	0,078	0,082	0,238	0,160	0,062	1
Río de Oro Bajo	2319-01-02-01	91,73	0,224	1,134	1,191	0,893	1,347	1,004	0,434	0,824	1,037	1,945	1,194	0,200	11
Río de Oro Medio	2319-01-02-02	166,38	0,122	0,702	0,738	0,531	0,836	0,644	0,262	0,516	0,666	1,162	0,699	0,080	6
Río de Oro Alto	2319-01-02-03	145,44	0,039	0,273	0,288	0,195	0,326	0,263	0,098	0,204	0,272	0,430	0,251	0,008	2
Rio Hato	2319-01-02-04	50,81	0,038	0,117	0,121	0,113	0,136	0,080	0,051	0,078	0,083	0,240	0,161	0,062	1
Rio Frio	2319-01-02-05	118,38	0,032	0,222	0,234	0,159	0,266	0,214	0,080	0,166	0,221	0,350	0,204	0,007	2
Rio Tona	2319-01-03-01	194,79	0,006	0,032	0,103	0,388	0,406	0,296	0,234	0,295	0,388	0,479	0,227	0,010	2
Rio Charta	2319-01-03-02	76,60	0,018	0,028	0,146	0,331	0,239	0,074	0,029	0,107	0,245	0,379	0,260	0,051	1
Rio Vetas	2319-01-03-03	157,04	0,037	0,057	0,299	0,678	0,489	0,152	0,059	0,219	0,502	0,776	0,534	0,105	3
Río Suratá Alto	2319-01-03-04	137,50	0,070	0,107	0,561	1,272	0,917	0,285	0,110	0,411	0,942	1,456	1,001	0,197	7
Rio Suratá Bajo	2319-01-03-05	125,34	0,189	0,455	1,109	2,269	1,898	0,853	0,499	1,006	1,780	2,905	1,885	0,413	15
Río Negro Bajo	2319-01-04-01	47,989	0,060	0,091	0,480	1,087	0,784	0,243	0,094	0,351	0,806	1,244	0,856	0,169	6
Quebrada Santacruz	2319-01-04-02	171,09	0,041	0,062	0,326	0,739	0,533	0,165	0,064	0,239	0,547	0,846	0,582	0,115	4
Quebrada Samaca	2319-01-04-03	32,69	0,008	0,012	0,062	0,141	0,102	0,032	0,012	0,046	0,105	0,162	0,111	0,022	0
Río Salamaga	2319-01-05-01	136,51	0,035	0,055	0,338	0,867	0,740	0,237	0,100	0,365	0,731	1,083	0,721	0,129	5
Quebrada Silgara	2319-01-05-02	81,53	0,003	0,005	0,078	0,277	0,315	0,105	0,049	0,174	0,294	0,408	0,257	0,037	2

Tabla 39. Oferta hídrica total m³/s (Año normal)

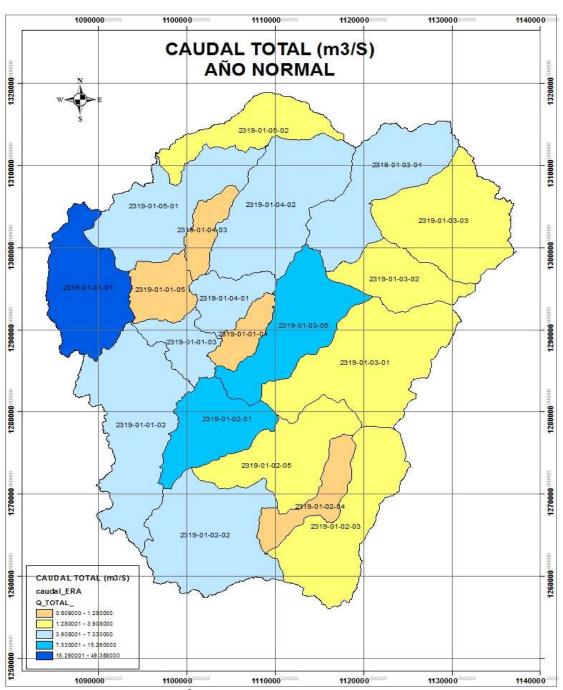


Figura 45. Oferta hídrica total m³/s (Año normal)

6.9.1.1 Caudal ambiental

El caudal ambiental es el 25% de la oferta hídrica total (normal), oferta hídrica total (lluvioso), oferta hídrica total (seco). La tabla 42 muestra el resultado del caudal ambiental para año normal y en la Figura 47 se gráfica el caudal ambiental cuenca alta del rio Lebrija año normal.

Datos gene	erales					(Caudal	Ambier	ntal m3	/s (Año	Norma	al)			
Microcuenca Nivel III	Código Microcuenca Nivel III	Área (Km2)	Q ener	Q feb	Q mar	Q abr	Q may	Q jun	Q jul	Q ago	Q sep	Q oct	Q non	Q dic	Total
Lebrija Alto Directos	2319-01-01-01	123,90	0,204	0,664	1,036	1,545	1,491	0,751	0,385	0,804	1,285	2,314	1,513	0,356	12,347
Quebrada La Angula	2319-01-01-02	187,52	0,035	0,108	0,112	0,104	0,126	0,074	0,047	0,072	0,077	0,221	0,148	0,058	1,181
Quebrada Lajas	2319-01-01-03	44,52	0,127	0,443	0,735	1,128	1,063	0,548	0,269	0,573	0,954	1,616	1,047	0,213	8,717
Quebrada aburrida	2319-01-01-04	32,09	0,006	0,018	0,019	0,018	0,021	0,013	0,008	0,012	0,013	0,038	0,025	0,010	0,202
Quebrada La Honda	2319-01-01-05	50,45	0,010	0,029	0,030	0,028	0,034	0,020	0,013	0,019	0,021	0,059	0,040	0,016	0,318
Río de Oro Bajo	2319-01-02-01	91,73	0,056	0,284	0,298	0,223	0,337	0,251	0,108	0,206	0,259	0,486	0,298	0,050	2,856
Río de Oro Medio	2319-01-02-02	166,38	0,031	0,175	0,184	0,133	0,209	0,161	0,065	0,129	0,167	0,291	0,175	0,020	1,740
Río de Oro Alto	2319-01-02-03	145,44	0,010	0,068	0,072	0,049	0,082	0,066	0,025	0,051	0,068	0,108	0,063	0,002	0,662
Rio Hato	2319-01-02-04	50,81	0,010	0,029	0,030	0,028	0,034	0,020	0,013	0,020	0,021	0,060	0,040	0,016	0,320
Rio Frio	2319-01-02-05	118,38	0,008	0,056	0,059	0,040	0,066	0,054	0,020	0,042	0,055	0,088	0,051	0,002	0,539
Rio Tona	2319-01-03-01	194,79	0,001	0,008	0,026	0,097	0,102	0,074	0,058	0,074	0,097	0,120	0,057	0,003	0,716
Rio Charta	2319-01-03-02	76,60	0,005	0,007	0,036	0,083	0,060	0,019	0,007	0,027	0,061	0,095	0,065	0,013	0,477
Rio Vetas	2319-01-03-03	157,04	0,009	0,014	0,075	0,170	0,122	0,038	0,015	0,055	0,126	0,194	0,133	0,026	0,977
Río Suratá Alto	2319-01-03-04	137,50	0,018	0,027	0,140	0,318	0,229	0,071	0,028	0,103	0,236	0,364	0,250	0,049	1,833
Rio Suratá Bajo	2319-01-03-05	125,34	0,047	0,114	0,277	0,567	0,474	0,213	0,125	0,252	0,445	0,726	0,471	0,103	3,815
Río Negro Bajo	2319-01-04-01	47,989	0,015	0,023	0,120	0,272	0,196	0,061	0,024	0,088	0,201	0,311	0,214	0,042	1,566
Quebrada Santacruz	2319-01-04-02	171,09	0,010	0,016	0,082	0,185	0,133	0,041	0,016	0,060	0,137	0,211	0,145	0,029	1,065
Quebrada Samaca	2319-01-04-03	32,69	0,002	0,003	0,016	0,035	0,025	0,008	0,003	0,011	0,026	0,040	0,028	0,005	0,203
Río Salamaga	2319-01-05-01	136,51	0,009	0,014	0,085	0,217	0,185	0,059	0,025	0,091	0,183	0,271	0,180	0,032	1,350
Quebrada Silgara	2319-01-05-02	81,53	0,001	0,001	0,019	0,069	0,079	0,026	0,012	0,044	0,073	0,102	0,064	0,009	0,501

Tabla 40. Caudal ambiental m3/s (Año normal)

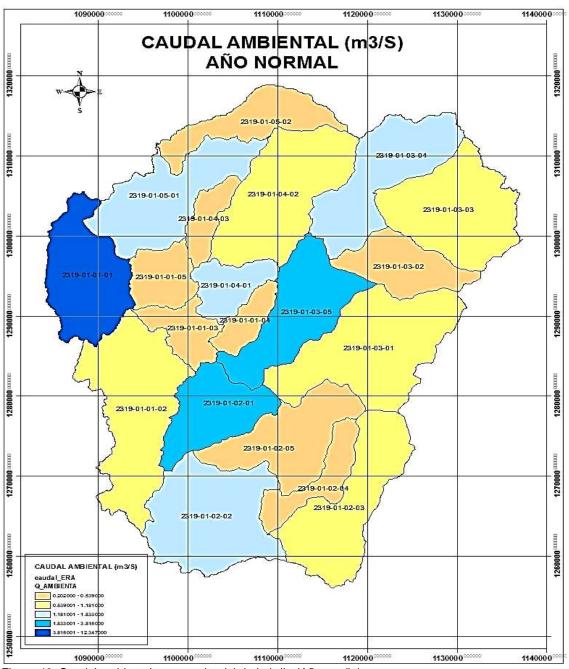


Figura 46. Caudal ambiental cuenca alta del rio Lebrija (Año medio)

6.9.1.2 Oferta hídrica total disponible (OHDT)

Se obtiene sustrayendo a la Oferta Hídrica Total Superficial (Normal), el caudal ambiental por el método del 25%; en la Tabla 41 y Figura 47, se presentan los

resultados de oferta hídrica Disponible total superficial año normal.

Da	itos generales						Oferta	Hídrica Di	sponible n	n3/s (Año N	lormal)				
Microcuenca	Código Microcuenca	Área (Km2)	Qener	Qfeb	Qmar	Qabr	Qmay	Qjun	Qjul	Qago	Qsep	Qoct	Qnon	Qdic	Total
Lebrija Alto Directos	2319-01-01-01	123,90	0,611	1,993	3,107	4,636	4,472	2,252	1,154	2,411	3,855	6,941	4,539	1,068	37,041
Quebrada La Angula	2319-01-01-02	187,52	0,106	0,323	0,335	0,312	0,377	0,223	0,141	0,217	0,230	0,663	0,445	0,173	3,544
Quebrada Lajas	2319-01-01-03	44,52	0,380	1,328	2,206	3,384	3,190	1,645	0,807	1,720	2,863	4,849	3,140	0,638	26,151
Quebrada aburrida	2319-01-01-04	32,09	0,018	0,055	0,057	0,053	0,064	0,038	0,024	0,037	0,039	0,114	0,076	0,030	0,606
Quebrada La Honda	2319-01-01-05	50,45	0,029	0,087	0,090	0,084	0,101	0,060	0,038	0,058	0,062	0,178	0,120	0,047	0,954
Río de Oro Bajo	2319-01-02-01	91,73	0,168	0,851	0,893	0,670	1,011	0,753	0,325	0,618	0,778	1,459	0,895	0,150	8,569
Río de Oro Medio	2319-01-02-02	166,38	0,092	0,526	0,553	0,398	0,627	0,483	0,196	0,387	0,500	0,872	0,524	0,060	5,219
Río de Oro Alto	2319-01-02-03	145,44	0,029	0,205	0,216	0,146	0,245	0,197	0,074	0,153	0,204	0,323	0,188	0,006	1,986
Rio Hato	2319-01-02-04	50,81	0,029	0,088	0,091	0,084	0,102	0,060	0,038	0,059	0,062	0,180	0,120	0,047	0,960
Rio Frio	2319-01-02-05	118,38	0,024	0,167	0,176	0,119	0,199	0,161	0,060	0,125	0,166	0,263	0,153	0,005	1,617
Rio Tona	2319-01-03-01	194,79	0,004	0,024	0,077	0,291	0,305	0,222	0,175	0,221	0,291	0,359	0,170	0,008	2,149
Rio Charta	2319-01-03-02	76,60	0,014	0,021	0,109	0,248	0,179	0,056	0,022	0,080	0,184	0,284	0,195	0,039	1,430
Rio Vetas	2319-01-03-03	157,04	0,028	0,043	0,224	0,509	0,367	0,114	0,044	0,164	0,377	0,582	0,400	0,079	2,931
Río Suratá Alto	2319-01-03-04	137,50	0,053	0,080	0,421	0,954	0,688	0,213	0,083	0,308	0,707	1,092	0,751	0,148	5,498
Rio Suratá Bajo	2319-01-03-05	125,34	0,142	0,341	0,832	1,702	1,423	0,640	0,374	0,755	1,335	2,178	1,414	0,310	11,445
Río Negro Bajo	2319-01-04-01	47,989	0,045	0,069	0,360	0,815	0,588	0,182	0,071	0,264	0,604	0,933	0,642	0,127	4,699
Quebrada Santacruz	2319-01-04-02	171,09	0,031	0,047	0,245	0,554	0,400	0,124	0,048	0,179	0,411	0,634	0,436	0,086	3,194
Quebrada Samaca	2319-01-04-03	32,69	0,006	0,009	0,047	0,106	0,076	0,024	0,009	0,034	0,078	0,121	0,083	0,016	0,610
Río Salamaga	2319-01-05-01	136,51	0,026	0,041	0,254	0,650	0,555	0,178	0,075	0,273	0,548	0,812	0,541	0,097	4,050
Quebrada Silgara	2319-01-05-02	81,53	0,002	0,004	0,058	0,208	0,236	0,079	0,037	0,131	0,220	0,306	0,193	0,028	1,502

Tabla 41. Oferta hídrica disponible m3/s (Año normal)

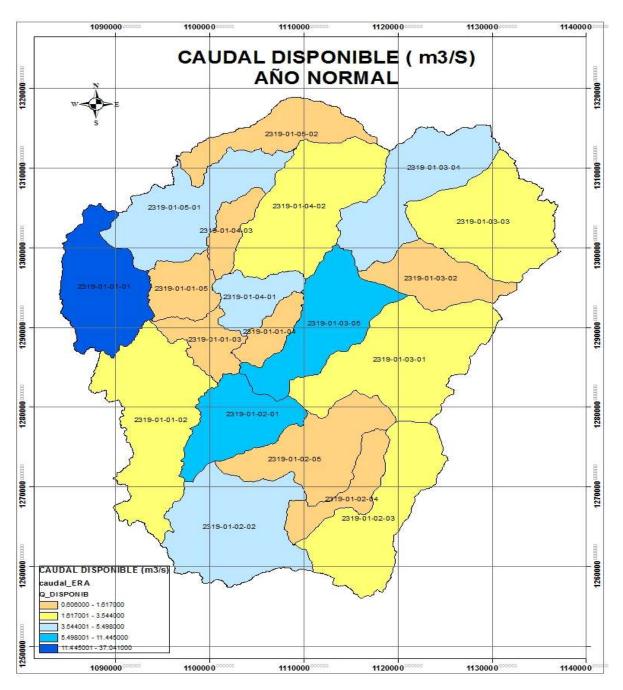


Figura 47. Oferta hídrica total disponible (Año normal)

6.9.1.3 Rendimiento hídrico

Realizado el análisis estadístico, se presenta en la Tabla 42, el rendimiento hídrico año normal. En las Figuras 48, 49 y 50, se observa el rendimiento hídrico anual para cada una de las subcuencas Nivel II y en cada mes respectivamente.

Datos	s generales					Ren	dimier	nto Híd	rico L	./S/Km	2 (Año	Normal)		
Microcuenca	Código Microcuenca	Área (Km2)	Q ene	Q feb	Q mar	Q abr	Q may	Q jun	Q jul	Q ago	Q sep	Q oct	Q nov	Q dic	Total
Lebrija Alto Directos	2319-01-01-01	123,90	6,58	21,44	33,43	49,89	48,13	24,24	12,4 2	25,95	41,48	74,70	48,85	11,50	398,61
Quebrada La Angula	2319-01-01-02	187,52	0,75	2,30	2,38	2,22	2,68	1,58	1,00	1,54	1,63	4,72	3,16	1,23	25,20
Quebrada Lajas	2319-01-01-03	44,52	11,3 9	39,77	66,07	101,3 7	95,55	49,28	24,1 6	51,51	85,76	145,23	94,05	19,11	783,26
Quebrada aburrida	2319-01-01-04	32,09	0,75	2,30	2,38	2,22	2,68	1,58	1,00	1,54	1,63	4,72	3,16	1,23	25,20
Quebrada La Honda	2319-01-01-05	50,45	0,75	2,30	2,38	2,22	2,68	1,58	1,00	1,54	1,63	4,72	3,16	1,23	25,20
Río de Oro Bajo	2319-01-02-01	91,73	2,44	12,37	12,98	9,73	14,69	10,94	4,73	8,98	11,31	21,20	13,01	2,17	124,55
Río de Oro Medio	2319-01-02-02	166,38	0,74	4,22	4,43	3,19	5,02	3,87	1,57	3,10	4,00	6,98	4,20	0,48	41,82
Río de Oro Alto	2319-01-02-03	145,44	0,27	1,88	1,98	1,34	2,24	1,81	0,68	1,40	1,87	2,96	1,73	0,06	18,21
Rio Hato	2319-01-02-04	50,81	0,75	2,30	2,38	2,22	2,68	1,58	1,00	1,54	1,63	4,72	3,16	1,23	25,20
Rio Frio	2319-01-02-05	118,38	0,27	1,88	1,98	1,34	2,24	1,81	0,68	1,40	1,87	2,96	1,73	0,06	18,21
Rio Tona	2319-01-03-01	194,79	0,03	0,17	0,53	1,99	2,09	1,52	1,20	1,51	1,99	2,46	1,17	0,05	14,71
Rio Charta	2319-01-03-02	76,60	0,24	0,36	1,91	4,32	3,11	0,97	0,37	1,40	3,20	4,94	3,40	0,67	24,89
Rio Vetas	2319-01-03-03	157,04	0,24	0,36	1,91	4,32	3,11	0,97	0,37	1,40	3,20	4,94	3,40	0,67	24,89
Río Suratá Alto	2319-01-03-04	137,50	0,51	0,78	4,08	9,25	6,67	2,07	0,80	2,99	6,85	10,59	7,28	1,44	53,31
Rio Suratá Bajo	2319-01-03-05	125,34	1,51	3,63	8,85	18,10	15,14	6,81	3,98	8,03	14,20	23,17	15,04	3,30	121,75
Río Negro Bajo	2319-01-04-01	47,989	1,25	1,90	10,00	22,66	16,34	5,07	1,96	7,32	16,79	25,93	17,83	3,52	130,57
Quebrada Santacruz	2319-01-04-02	171,09	0,24	0,36	1,91	4,32	3,11	0,97	0,37	1,40	3,20	4,94	3,40	0,67	24,89
Quebrada Samaca	2319-01-04-03	32,69	0,24	0,36	1,91	4,32	3,11	0,97	0,37	1,40	3,20	4,94	3,40	0,67	24,89
Río Salamaga	2319-01-05-01	136,51	0,26	0,40	2,48	6,35	5,42	1,73	0,74	2,67	5,35	7,93	5,28	0,94	39,56
Quebrada Silgara	2319-01-05-02	81,53	0,03	0,07	0,95	3,40	3,86	1,29	0,60	2,14	3,60	5,01	3,16	0,46	24,57

Tabla 42. Rendimiento hídrico L/S/Km2 (Año normal)

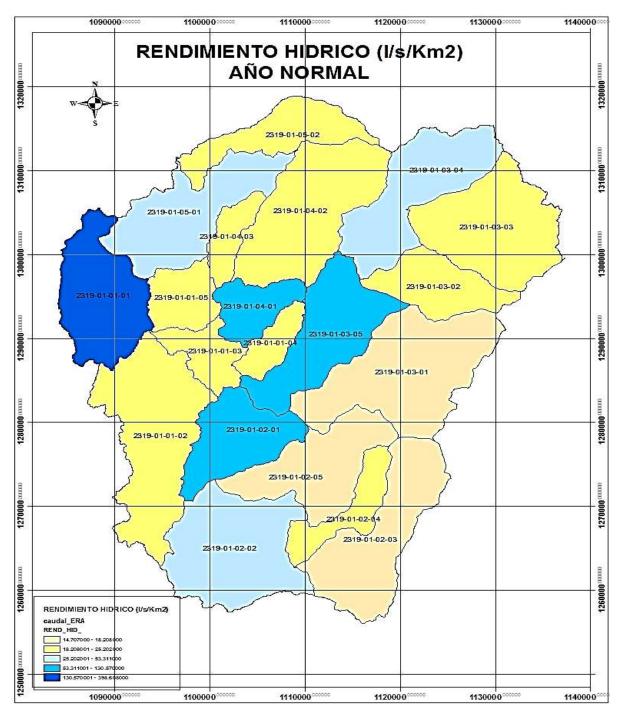


Figura 48. Rendimiento hídrico anual cuenca alta del rio Lebrija

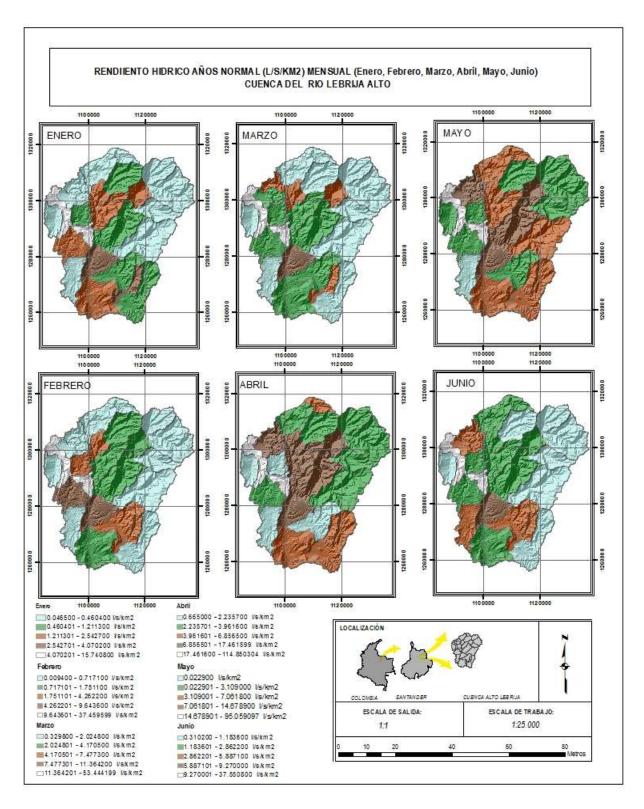


Figura 49. Rendimiento hídrico mensual año normal (enero-junio) cuenca alta del rio Lebrija

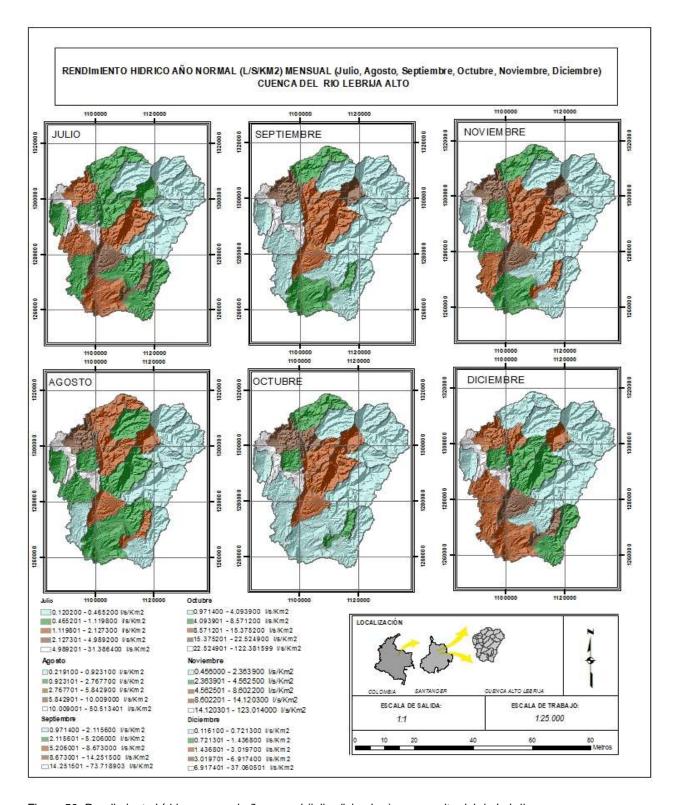


Figura 50. Rendimiento hídrico mensual año normal (julio-diciembre) cuenca alta del rio Lebrija

SECCIÓN G

CAPITULO 7 INDICADORES

7.1 Demanda hídrica

La demanda hídrica superficial se debe estimar para las actividades socioeconómicas predominantes en las Cuencas que requieren del recurso hídrico para su desarrollo.

En primera instancia se tomó la información de concesiones de aguas superficiales otorgadas por CDMB en su área de jurisdicción, y se adicionó un factor por consumo de acuerdo con los datos reportados en el estudio nacional del Agua.

La discriminación de los diferentes consumos para cada uno de los usos (consumo humano, riego y abrevaderos e industrial) no fue posible realizarlo en forma estricta, pues algunas concesiones otorgadas por la CMDB no se presentan a este detalle. Por lo anterior se tomó información de tasa por uso del agua en donde se tiene la demanda por consumo humano y otros usos.

La demanda por Cuenca Nivel III del Alto Lebrija se presenta en la Tabla 43 y Figura 51.

Datos	generales			Demanda CDMB n	n3/año
Microcuenca Nivel III	Código Microcuenca Nivel III	Área (Km2)	DUD	OTROS USOS	DT
Lebrija Alto Directos	2319-01-01-01	123.90	188,110.98	2,079,370.31	2,267,481.29
Quebrada La Angula	2319-01-01-02	187.52	1,592,284.18	4,907,268.24	6,499,552.41
Quebrada Lajas	2319-01-01-03	44.52	104,398.79	185,704.15	290,102.94
Quebrada aburrido	2319-01-01-04	32.09	205,387.35	2,906,636.85	3,112,024.20
Quebrada La Honda	2319-01-01-05	50.45	134,080.98	1,071,435.60	1,205,516.58
Río de Oro Bajo	2319-01-02-01	91.73	196,534.87	449,598.03	646,132.90
Río de Oro Medio	2319-01-02-02	166.38	1,503,964.45	4,710,598.55	6,214,563.00
Río de Oro Alto	2319-01-02-03	145.44	20,560,372.02	9,224,287.57	29,784,659.59

Datos	generales			Demanda CDMB n	n3/año
Microcuenca Nivel III	Código Microcuenca Nivel III	Área (Km2)	DUD	OTROS USOS	DT
Rio Hato	2319-01-02-04	50.81	9,798,719.59	5,441,587.26	15,240,306.85
Rio Frio	2319-01-02-05	118.38	20,925,698.92	4,268,320.81	25,194,019.73
Rio Tona	2319-01-03-01	194.79	37,855,697.34	2,020,944.19	39,876,641.53
Rio Charta	2319-01-03-02	76.60	219,079.84	2,906,636.85	3,125,716.69
Rio Vetas	2319-01-03-03	157.04	397,247.64	8,008,515.17	8,405,762.80
Río Surata Alto	2319-01-03-04	137.50	356,403.73	1,175,958.52	1,532,362.24
Rio Surata Bajo	2319-01-03-05	125.34	38,038,518.22	86,067,450.28	124,105,968.50
Río Negro Bajo	2319-01-04-01	47.989	1,276,269.49	82,275.85	1,358,545.34
Quebrada Santacruz	2319-01-04-02	171.09	56,684.07	271,498.47	328,182.54
Quebrada Samaca	2319-01-04-03	32.69	93,381.88	339,888.70	433,270.58
Río Salamaga	2319-01-05-01	136.51	81,827.09	830,294.00	912,121.09
Quebrada Silgara	2319-01-05-02	81.53	4,066.88	170,675.99	174,742.87
Total		2172.30	133,588,728.31	137,118,945.38	270,707,673.69

Tabla 43. Demanda cuenca rio Lebrija

Figura 51. Demanda hídrica Cuenca Alta del rio Lebrija

7.2 Índice de aridez

El cálculo de índice de aridez se realizó de acuerdo con la ecuación 16 del numeral 5.2.1, y los resultados mensuales calculados para las estaciones de la Cuenca Alto Lebrija se muestran a continuación:

			Ca	lculo Ïı	ndice	de Ario	dez (IA	١)						
Codigo	Estaciones	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
16015020	ISER PAMPLONA	0.27	0.20	0.11	0.05	0.06	0.09	0.11	0.11	0.08	0.05	0.06	0.28	0.12
23185010	VILLA LEIVA	0.64	0.45	0.13	0.06	0.07	0.08	0.12	0.09	0.08	0.05	0.06	0.24	0.17
23195090	VIVERO SURATA	0.40		0.11	0.05	0.07	0.14		0.13	0.06	0.04	0.06	0.23	
23195110	LLANO GRANDE		0.11	0.11	0.12	0.09	0.09	0.21	0.13	0.09	0.07	0.11	0.59	
23195130	APTO PALONEGRO	0.27	0.11	0.10	0.09	0.09	0.12	0.19	0.14	0.13	0.05	0.07		0.13
23195200	CACHIRI	0.64	0.56	0.20	0.06	0.05	0.13	0.24	0.09	0.05	0.04	0.06	0.28	0.20
37015010	SILOS	0.59	0.29	0.14	0.05	0.04	0.03	0.04	0.05	0.05	0.05	0.06		0.15
37015020	BERLÍN	0.63		0.23	0.06	0.06	0.07	0.09	0.08	0.07	0.06	0.11	0.56	0.20
24055030	ZAPATOCA		0.09	0.07	0.07	0.06	0.07	0.13	0.10	0.10	0.05	0.06	0.27	0.10

Tabla 44. Índice de aridez Cuenca Alto Lebrija

En la Figura 52, se muestra la distribución espacial del indicador índice de Aridez (Ia), el cual, de acuerdo con los resultados obtenidos para la cuenca Alto Lebrija, se observó que este índice (Ia) se encuentra entre los valores 0.12 y 0.20, que muestra desde altos excedentes de agua a moderados excedentes de agua. Lo cual significa que en esta cuenca en promedio no existe riesgo de aridez.

En la parte baja de la cuenca se encuentra en Altos Excedentes de agua; La parte media de Rio de Oro y Surata alto se encuentra con excedentes de agua; Los valores de moderados a excedentes de agua se ubican en la parte alta de rio de Oro, Tona, Salamaga y la parte alta de Rionegro.

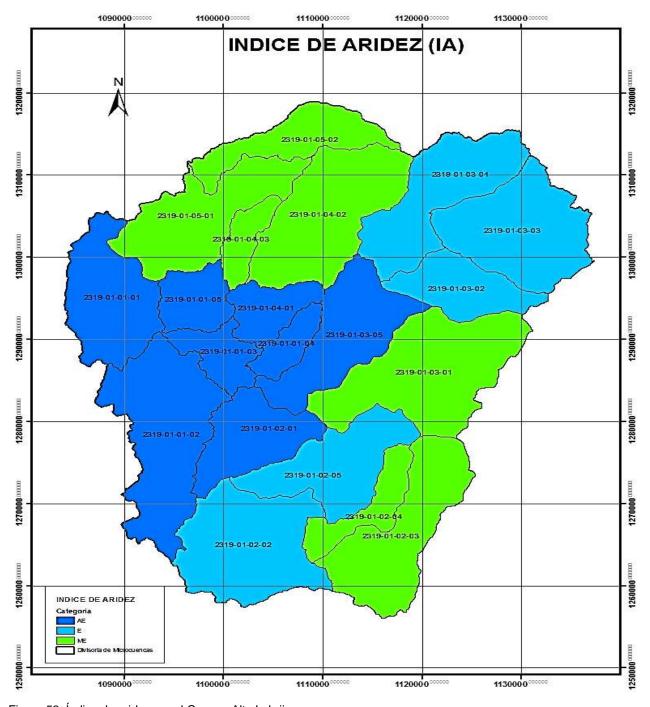


Figura 52. Índice de aridez anual Cuenca Alto Lebrija

En las Figuras 53 y 54, se visualiza en los mapas el índice de aridez medio mensual multianual; manteniéndose una margen de excedentes de agua altos y moderados en los meses donde se reportan lluvias en la zona.

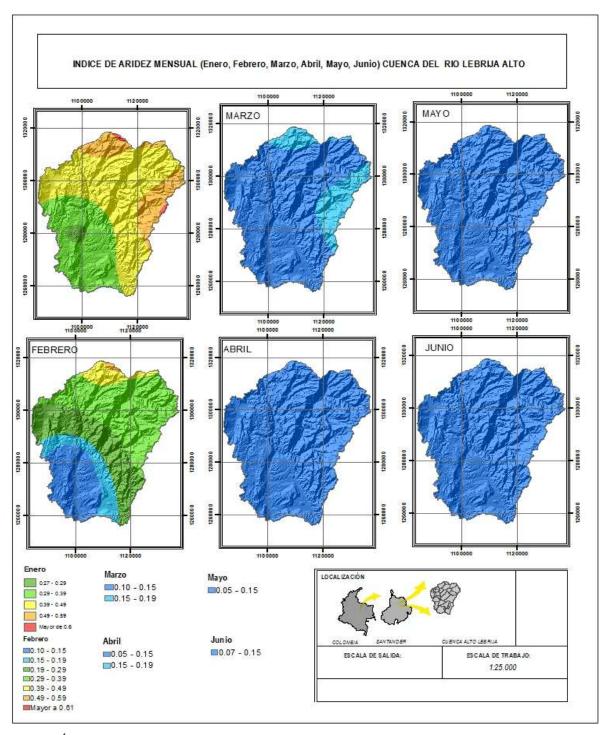


Figura 53. Índice de aridez mensual (enero – junio) Cuenca rio Alto Lebrija

Los meses enero, febrero, julio y diciembre presentan mayores deficiencias de agua correspondientes a los meses secos de la zona de estudio.

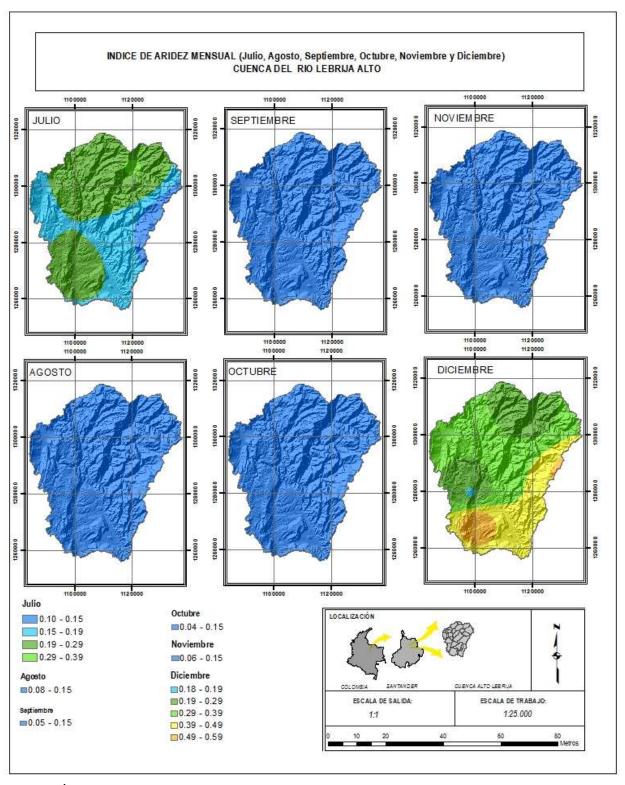
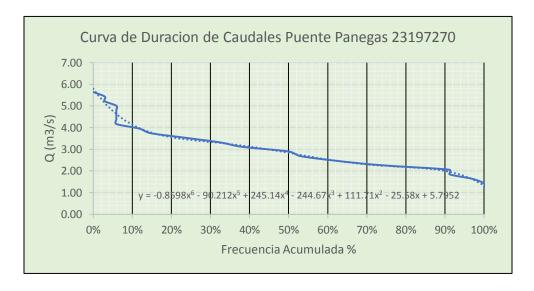


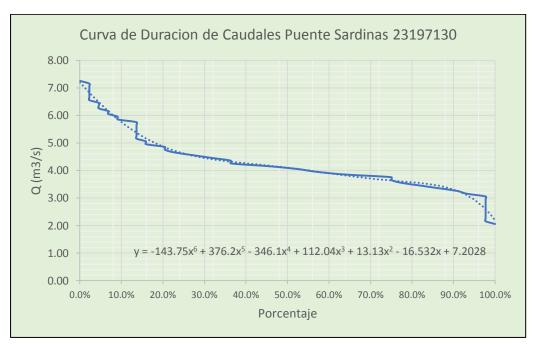
Figura 54. Índice de aridez mensual (julio-diciembre) Cuenca rio Alto Lebrija.

7.3 Índice de retención y regulación hídrica (IRH)

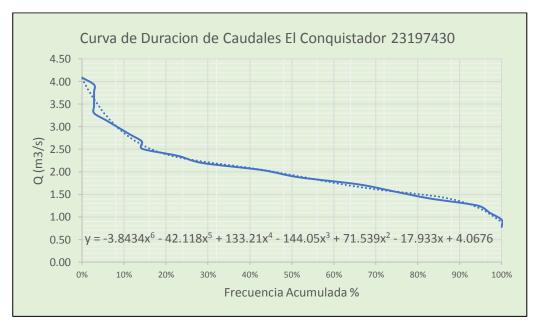

El resultado del índice de retención y regulación hídrica está calculado de acuerdo a la ecuación 5.2.2 índice de retención y regulación hídrica (IRH).

Dado que el IRH es obtenido de las curvas de duración de caudales diarias, y que solo fue posible calcularlas a través de la información de caudales diarios registrados en las estaciones operadas por el IDEAM, este índice se obtuvo únicamente para las tres estaciones de estudio. En la Tabla 45, se observa la aplicación de las Ecuaciones 22, 23 y 24 de duración de caudales para las estaciones analizadas las cuales se hallaron de polinomio de grado seis para darle una mayor tendencia a la curva.

Estación Hidrológica	Ecuación	
Puente Panegas	$y = -0.8598x^{6} - 90.212x^{5} + 245.14x^{4} - 244.67x^{3} + 111.71x^{2} - 25.58x + 5.7952$	Ecuación 22
Puente Sardinas	$y = -143,75x^6 + 376,2x^5 - 346,1x^4 + 112,04x^3 + 13,13x^2 - 16,532x + 7,2028$	Ecuación 23
Conquistador	$y = -3,8434x^{6} - 42,118x^{5} + 133,21x^{4} - 144,05x^{3} + 71,539x^{2} - 17,933x + 4,0676$	Ecuación 24


Tabla 45. Ecuación Curva de Duración de Caudales

La representación esquemática de las curvas de tenencia de duración de caudales para las tres estaciones que cuentan con información hidrológica se observan en las gráficas 34, 35 y 36.



Gráfica 34. Curva de duración de caudales Puente Panegas 23197270

Gráfica 35. Curva de duración de caudales Puente Sardinas 23197130

Gráfica 36. Curva de duración de caudales El Conquistador 23197430

El cálculo resultado del Índice de Regulación Hídrica para las tres estaciones hidrológicas, está representado en Tabla 46.

Estación Hidrológica	Vp	Vt	IRH	Descripción
Puente Panegas	1,8280	2,9442	0,621	Capacidad de la cuenca para retener y regular baja
Puente Sardinas	2,489	4,2678	0,583	Capacidad de la cuenca para retener y regular baja
Conquistador	1,241	2,008	0,618	Capacidad de la cuenca para retener y regular baja

Tabla 46. IRH estaciones Alto Lebrija

Teniendo en cuenta que en el área de estudio no existen estaciones hidrológicas con series de tiempos suficientemente extensas para el cálculo del indicador, se realizó la generación de caudales utilizando métodos indirectos que relacionan la precipitación y la evapotranspiración.

Los datos históricos de la precipitación y ETR de las estaciones climatológicas con mayor influencia en el área de estudio, se encuentran registrados en las Tablas 47-51.

					Ap	to Palon	egro					
					+1	Precipita	ción					
Año	Enr	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985	145,3	39,8	86,4	150,5	49,9	58,8	124,7	61,2	72,8	134,5	79,5	52,6
1986	107	17,13	117,3	154,5	128,6	53,1	94,2	66,4	79,5	206,4	62,7	9
1987	39,7	49,63	220,6	256,6	160,9	86,8	149,8	74,8	74,1	123,3	102	12,8
1988	8,2	48,49	62,5	150,9	91	92,5	70,9	119,4	115,4	196,5	181,1	24,8
1989	4,8	5,4	235,2	130,6	125,7	63,8	80,8	44,1	128,4	73,7	48,8	70,6
1990	25,8	82,3	223,2	140,8	58,8	64,1	27,8	35,4	78,5	83,3	124,7	192,1
1991	15,6	28,5	149,6	111,3	120	49,5	69,8	68,1	126,8	129,1	114,1	8,2
1992	18,6	53,2	34,4	94,2	99	54,7	120,1	74,4	98,9	45,5	180	81,4
1993	20,7	39,1	81,5	196	94,7	57,6	101,2	96,5	98,2	127,4	135,6	10,2
1994	96	40,7	102,2	135,5	151	21,8	62	60,5	116,4	77	230,1	61,7
1995	8,5	82,3	213,8	143,3	79,2	100,1	61,7	181,7	60,3	150,1	60	60,2
1996	45,6	97,4	234,6	79,2	66,2	136	112,7	37	159	209,1	91,6	20,7
1998	54,8	259,4	63,6	91,7	144,2	54,1	89,8	57,8	75,8	143,3	103,8	42,3
1999	53,7	88,2	61,6	74,8	90,2	53,5	144,3	58,9	142,8	142,5	142,3	58,7
2000	253,1	223,1	63	48,1	104,7	125,6	51,5	48	136,8	95,6	107,7	40,2
2001	102,3	33,9	71,7	67,7	103,8	92,2	59,9	57,8	85,3	222,2	192,2	91,1
2002	26,2	14,2	88,4	177,8	105,4	88,6	38,9	37,4	60,8	112,4	67,8	8,4

					Ap	to Palon	egro					
					+	Precipitad	ción					
Año	Enr	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
2003	23	209,9	272	106,7	52,5	92,4	108,9	63,7	146,4	152	208,5	107,8
2004	58,9	42,4	73,2	114,9	101	40,3	92	53,1	85,9	120,6	160,4	95,2
2005	104,5	271,6	61,7	145,9	108,9	40,7	65,2	43,3	158,3	258,8	151,7	108,6
2006	85,8	58	115,6	109,4	124,6	140,5	45,8	105,2	46,3	264,7	41,1	22,4
2007	66,1	63,4	145,3	83	162	43,7	46,3	108,5	85,5	142,7	56,1	28
2008	52,7	300	300,7	50,6	204,3	36,3	81	87,3	88,4	81,7	211,5	18,1
2011	28,3	86,5	70	170,7	177,7	91,2	67,6	136,1	93,7	389,1	89,7	113,1
2014	33,7	148,4	41	71,8	88,7	60,3	88	97,6	81,4	224,6	121,8	40,5
					(Calculo E	TR					
Año	Enr	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985	36,525	29,813	25,726	31,634	27,626	29,065	31,614	24,521	29,443	19,723	19,197	30,300
1986	35,556	14,294	26,559	22,950	31,008	26,706	36,031	28,593	29,375	19,575	22,453	8,904
1987	29,070	32,907	34,402	32,234	31,149	32,110	30,522	33,791	29,417	27,812	33,033	12,529
1988	8,165	27,437	37,545	24,218	33,570	26,781	29,469	20,006	24,718	31,824	25,522	19,477
1989	4,791	5,378	24,503	32,396	31,360	29,521	31,821	28,730	30,836	28,688	26,907	32,885
1990	21,986	30,137	28,619	28,512	26,143	31,134	21,890	25,212	32,395	29,675	29,015	39,232
1991	15,203	22,682	35,076	33,331	36,593	27,789	30,580	27,029	30,769	34,406	24,406	8,051
1992	17,398	27,084	24,567	24,264	30,148	28,267	32,256	32,026	32,727	29,254	30,038	37,162
1993	18,084	28,543	26,167	26,082	25,262	28,305	35,969	40,378	27,951	35,130	26,983	10,026
1994	40,120	23,924	25,718	27,589	30,347	18,210	31,874	26,729	34,562	28,276	31,357	31,698
1995	8,464	37,501	26,738	31,746	31,257	32,089	29,790	27,305	30,822	28,495	31,791	31,772
1996	33,668	34,117	29,104	32,441	26,326	25,130	32,969	24,593	30,933	31,879	28,025	18,395
1998	41,140	38,494	25,901	31,255	27,349	26,549	34,184	28,263	27,828	35,427	28,541	23,099
1999	32,202	24,451	29,882	29,197	39,678	22,198	35,556	25,471	18,550	27,386	27,498	25,448
2000	35,442	31,312	26,018	26,067	22,898	30,472	31,708	30,434	25,479	35,459	29,945	27,383
2001	43,966	26,594	30,063	34,125	30,442	36,844	35,763	35,923	33,804	35,956	33,650	28,722
2002	23,945	13,726	38,746	29,229	34,294	30,103	27,428	29,920	33,890	40,494	35,106	8,358
2003	21,463	43,052	39,491	35,625	32,424	31,183	32,739	37,476	34,674	26,651	31,443	34,732
2004	34,525	32,952	38,637	25,243	33,012	29,092	32,079	34,685	30,153	34,661	33,981	35,899
2005	33,278	34,156	35,897	30,696	34,377	23,902	34,338	26,894	29,678	30,899	25,607	34,008
2006	34,247	34,311	30,418	24,913	34,748	29,771	25,214	36,525	30,052	30,031	24,960	18,580
2007	42,500	41,387	27,815	29,699	26,343	25,353	30,612	27,344	29,879	29,348	27,261	19,364
2008	31,883	38,997	30,844	26,394	30,635	23,510	28,998	30,793	33,851	30,432	23,066	16,264
2011	24,013	28,345	19,739	25,996	23,287	27,696	27,551	41,468	28,459	20,439	23,037	28,102
2014	27,463	41,595	28,371	33,613	33,012	31,219	41,770	34,957	32,897	31,754	30,542	29,092

Tabla 47. Prestación (P) y evapotranspiración real ETR Apto Palonegro

					Viv	ero Surat	a					
					Pre	ecipitación	1					
Año	Enr	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985	13,2	43,8	74,5	70,7	156,3	57,9	68,9	76,7	133,5	168,9	91,5	135,3
1986	28,6	58,6	62,6	280	135,5	34,9	12,4	36,4	179,3	232,4	99	19,6
1987	22,8	5,4	45,8	68,9	130,2	89,2	23,8	38,8	127,1	292,4	149,2	60,5
1988	19,8	78,2	39,9	115,4	78,5	86,5	38,7	220,2	137,3	260	280,3	43,6
1989	61,8	42,2	152,5	71,6	89,5	45,8	24,6	92,4	136,9	161,5	41,3	62,4
1990	36,2	99,2	125	299,1	72	107,5	20,9	79,4	61,9	235,7	136,2	88,8
1991	17,6	3,5	112,8	164,5	179,6	53,4	9,8	13	102,8	103,2	191	28,3
1992	36,3	38,7	29	87	269,6	85	25,1	40,2	50,3	82,2	130,7	72
1993	36,3	10,8	81,5	211,4	228,7	35,4	18,1	33,3	115	112,6	230,1	45,4
1994	23,5	30,2	75,5	234,5	66,4	20,9	18,2	38,3	134,6	150,6	223,9	22,3
1995	10,7	46	97,3	118,8	125,9	111	42,3	159,4	141,1	217,1	39,6	28,2
1996	25,8	93,7	143,7	60,5	89,1	79,3	123,1	97,2	124,5	183,3	109,7	43,4
1998	27	43,1	36,6	157,9	174,6	48,6	59,1	90,4	152,2	224,7	133,8	125
1999	34,9	94,7	51,5	183,5	136,9	135,5	51,8	117	139,4	174,9	210,2	42,7
2000	47,3	89,5	37,8	121,691	53,7	42,7	51,5	5,2	171,5	100,6	115,8	19,4
2001	35,5	19,9	121,4	55,5	85,3	13,3	27,4	5,4	132,4	183,2	102,2	49,7
2002	15,1	11,3	162,3	193,5	194,7	87,9	37,9	8,5	127,7	167,6	49,8	73,6
2003	9	39,5	74,2	233,8	34,1	65,1	39,6	81,5	211,7	287,2	119,6	96,9
2004	54,1	31,5	48,3	166,5	160,1	46,3	12,2	34,3	140,1	138,7	145,2	39,7
2005	79,2	34,3	16,6	93,5	244,7	130,172	69,5	60,7	117,4	231,6	184,2	10,1
2006	39,9	3,9	163,8	242,2	75,4	93,3	26,9	52,5	74,1	159,9	182,3	67,4
2007	24,4	1,5	74,9	54,5	67,6	30,5	59,9	168,2	97,2	302,7	46,9	15,3
2008	19,6	59	40,8	81,1	224,2	53,9	26,5	147,8	146,9	168	278,6	15,1
2011	38,4	77,7	201,7	335	259,3	57,3	39,8	76,8	87	177,5	243,1	150,1
2014	12,4	81,6	51,1	179,4	89,3	1,5	6,9	51,7	73,8	271	110,8	28,8
					Ca	lculo ETF)					
Año	Enr	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985	12,276	23,664	23,495	20,868	18,345	21,711	23,216	22,626	22,359	13,755	16,775	25,352
1986	20,230	21,905	25,297	16,421	21,554	19,554	11,780	22,105	24,774	18,837	24,630	14,865
1987	18,376	5,354	24,236	24,895	23,191	22,142	16,515	23,346	24,540	18,645	28,193	30,502
1988	18,121	26,887	27,062	20,529	26,615	21,427	21,526	14,085	15,673	22,586	22,366	24,220
1989	30,480	24,989	23,383	29,131	18,212	22,748	18,125	28,823	22,925	24,953	23,740	31,683
1990	26,086	31,754	23,452	21,125	22,429	27,456	16,847	30,533	27,287	24,014	24,723	31,420
1991	16,230	3,493	23,317	27,919	27,804	22,121	9,432	12,045	24,107	23,980	24,302	21,667
1992	25,487	25,145	22,477	23,283	24,226	25,899	18,172	23,405	22,793	27,806	26,015	32,380
1993	23,416	10,496	27,133	17,436	15,697	20,161	15,532	24,231	21,952	27,272	24,033	28,411
1994	19,471	19,747	25,099	23,116	20,123	16,738	15,837	22,691	25,130	25,470	23,583	18,822
1995	10,519	26,258	29,260	20,923	23,027	23,542	22,977	16,531	26,846	19,724	25,846	22,393
	<u> </u>	· ·					· ·		· ·	<u> </u>		

1996	21,528	29,480	28,513	25,532	17,652	18,756	25,249	25,992	23,665	26,647	21,978	26,184
1998	23,454	27,123	22,727	20,925	18,412	18,117	25,574	25,038	24,563	24,979	29,294	12,311
1999	24,802	21,342	25,772	24,293	33,709	19,270	26,778	22,267	28,521	17,874	27,482	24,307
2000	24,568	26,556	23,663	22,087	19,122	20,170	25,979	5,169	18,651	25,860	26,563	17,215
2001	26,808	17,421	30,106	24,582	21,035	11,726	20,836	5,381	23,771	23,629	29,760	25,704
2002	14,509	10,952	27,081	22,642	22,499	21,454	24,053	8,374	29,746	29,717	27,686	23,994
2003	8,929	27,387	29,968	21,169	21,916	21,378	23,428	30,801	21,804	18,747	25,977	31,147
2004	30,821	25,285	30,777	19,717	21,949	23,564	11,265	23,276	15,746	23,875	26,505	24,941
2005	30,190	23,778	15,672	24,832	24,814	19,578	23,619	22,838	24,032	23,734	22,249	9,824
2006	26,355	3,893	23,647	17,260	19,160	24,113	17,954	26,831	27,614	24,672	31,912	34,019
2007	21,698	1,500	24,773	19,875	21,754	19,585	28,681	16,488	23,044	22,837	23,735	13,864
2008	17,915	30,620	26,683	18,393	22,833	20,530	16,462	22,481	12,383	27,347	20,700	14,091
2011	26,365	27,381	20,000	22,580	18,674	20,999	21,605	26,432	22,475	16,704	20,216	29,049
2014	12,082	31,779	31,647	28,322	22,851	1,499	6,817	27,581	23,889	21,619	24,955	21,697

Tabla 48. Prestación (P) y evapotranspiración real ETR Vivero Suratá

					L	lano Gra	nde					
					F	Precipitac	ión					
Año	Enr	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985	6,80	37,10	131,30	174,10	45,90	54,00	56,90	100,40	116,90	111,50	46,50	6,80
1986	8,10	25,80	95,20	74,10	98,80	26,10	79,10	119,30	77,80	179,10	50,20	6,20
1987	109,30	34,30	246,70	148,00	115,80	60,90	154,90	64,40	74,00	162,00	48,60	16,00
1988	10,40	79,10	50,00	90,40	30,50	61,50	94,10	148,20	77,30	106,20	174,40	44,90
1989	4,80	7,40	131,70	48,30	81,70	72,20	74,20	46,10	73,11	123,30	41,50	36,90
1990	15,80	16,10	233,20	77,80	113,90	22,80	27,60	50,20	87,00	86,30	100,00	65,80
1991	10,70	19,90	96,00	104,60	64,50	43,90	72,50	99,00	117,20	75,20	79,10	7,40
1992	17,50	68,00	25,70	153,00	72,50	27,70	118,60	60,20	98,60	37,90	170,60	15,30
1993	11,00	33,80	92,00	109,60	98,90	71,10	41,60	51,70	98,00	55,20	121,60	5,90
1994	96,60	34,40	37,80	162,10	69,70	40,80	42,70	62,50	107,50	96,80	105,70	61,20
1995	19,40	17,00	123,40	91,80	92,52	71,24	129,70	146,60	62,90	163,50	41,80	46,60
1996	37,40	68,60	82,30	47,90	141,90	124,30	129,20	82,50	98,30	97,00	83,20	11,80
1998	115,30	121,20	114,90	54,60	68,60	41,10	103,00	29,90	101,10	193,00	44,80	38,00
1999	26,80	65,50	89,00	48,70	54,20	68,60	55,80	68,40	194,50	78,00	78,30	54,50
2000	109,60	106,70	73,10	28,30	154,20	62,60	36,50	43,30	126,70	124,80	79,70	25,70
2001	30,30	26,90	132,70	47,50	24,80	67,00	106,90	37,40	60,60	165,90	112,00	14,90
2002	5,20	26,60	162,20	81,40	162,70	95,90	61,80	31,50	44,40	69,80	71,70	33,20
2003	41,70	152,50	228,20	112,60	46,70	132,20	56,00	59,00	89,30	170,00	160,90	33,00
2004	18,90	118,80	101,60	163,40	210,90	40,30	52,90	19,80	84,70	142,60	91,20	42,70
2005	110,80	445,50	13,60	101,90	118,90	77,60	59,50	36,90	112,40	215,60	137,10	27,50
2006	32,20	70,40	132,70	47,70	126,50	151,80	65,50	97,20	62,50	169,80	59,20	19,10
2007	19,90	49,50	74,40	75,90	118,20	101,60	21,50	110,70	101,50	108,70	55,80	14,50

					L	lano Grai	nde					
					F	Precipitac	ión					
Año	Enr	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
2008	11,50	158,10	190,00	84,70	79,50	32,30	79,60	72,10	114,10	86,00	154,90	2,50
2011	8,50	0,60	35,00	20,90	104,30	116,60	24,40	88,60	42,20	135,17	54,24	23,94
2014	33,70	46,20	51,50	51,80	48,90	25,00	35,50	157,80	89,50	232,80	172,20	8,20
					C	Calculo E	TR					
Año	Enr	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985	6,789	31,059	66,788	68,330	39,518	43,131	44,299	58,987	60,725	61,929	38,614	6,788
1986	8,082	24,178	59,470	52,743	61,825	24,962	52,076	62,397	51,860	68,402	41,108	6,192
1987	59,036	31,147	76,761	69,185	67,558	47,718	67,666	47,885	49,899	68,209	39,721	15,746
1988	10,364	53,744	42,191	39,678	26,967	43,615	57,678	68,079	52,951	60,023	60,180	36,328
1989	4,795	7,380	57,795	40,683	54,095	53,249	54,060	31,305	40,332	52,868	36,693	32,132
1990	15,579	15,808	70,870	54,186	64,484	21,570	26,122	41,542	54,614	55,304	56,783	47,193
1991	10,659	19,269	57,818	58,678	49,798	38,142	49,595	55,711	60,984	48,028	48,963	7,384
1992	17,051	44,002	24,543	63,609	53,057	25,977	57,992	44,943	56,773	33,919	64,519	15,121
1993	10,951	30,216	58,742	60,919	61,881	49,528	35,535	41,033	54,164	41,557	58,480	5,892
1994	49,710	29,584	32,702	57,483	52,659	35,435	36,697	47,628	61,377	59,731	60,669	47,279
1995	17,612	16,064	54,886	55,483	61,624	53,128	66,645	67,479	48,626	71,099	36,365	39,127
1996	32,976	47,390	55,533	39,724	68,154	62,251	64,741	54,300	57,181	58,731	52,787	11,723
1998	61,698	60,854	65,964	45,233	53,270	36,542	60,564	27,722	58,288	66,609	37,315	33,451
1999	25,247	45,946	57,242	40,754	43,902	48,886	44,259	49,467	66,484	54,242	51,277	41,475
2000	55,567	54,589	51,795	26,554	69,855	48,335	32,712	37,573	62,362	62,466	52,364	24,573
2001	28,290	24,869	65,420	40,358	24,016	49,525	61,465	33,792	45,950	66,055	58,639	14,748
2002	5,196	24,912	64,636	53,818	69,914	59,253	48,119	29,298	37,606	49,785	50,925	30,673
2003	36,830	59,345	69,558	58,528	40,279	65,777	45,336	47,013	55,251	64,801	64,706	29,567
2004	18,454	56,124	62,425	66,028	74,785	34,802	42,027	19,318	52,988	64,477	54,277	36,125
2005	56,078	64,613	13,509	61,226	65,370	54,897	47,228	33,596	61,765	70,346	63,724	25,921
2006	29,200	47,628	68,141	40,244	68,669	68,886	50,272	58,228	45,871	68,884	49,359	18,656
2007	19,470	38,160	54,112	54,357	68,021	60,558	20,895	61,729	56,863	59,185	43,505	14,330
2008	11,428	60,478	67,965	54,756	55,346	29,977	54,555	51,372	60,589	56,140	66,810	2,499
2011	8,480	0,000	31,565	20,283	60,391	59,520	23,345	53,148	35,551	73,410	45,767	23,419
2014	30,511	37,971	42,870	43,296	42,239	24,048	32,661	64,578	54,886	66,409	63,590	8,176

Tabla 49. Prestación (P) y evapotranspiración real ETR Llano Grande

						Berlín							
	Precipitación												
Año Enr Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic													
1985	25,00	13,70	29,50	46,80	97,40	43,00	56,00	50,10	56,30	108,90	39,20	44,30	
1986	19,60	42,40	17,60	179,90	125,20	95,80	56,90	64,20	90,40	107,90	54,30	28,70	
1987	1987 14,37 10,00 28,60 40,30 152,00 14,70 52,40 38,10 101,80 216,40 38,00 16,60												

						Berlín						
					F	recipitac	ión					
Año	Enr	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1988	12,00	52,30	43,80	77,90	77,30	67,20	67,10	134,80	130,40	72,50	107,30	45,80
1989	11,10	17,00	62,90	14,30	101,00	45,80	39,40	29,60	132,80	84,50	23,70	41,90
1990	16,40	18,60	87,80	87,30	62,60	67,20	62,90	96,10	71,00	114,90	38,70	39,00
1991	23,60	8,30	96,10	59,80	72,50	35,40	66,30	55,20	75,50	59,30	61,90	15,50
1992	6,50	3,30	1,30	48,50	67,10	34,20	80,10	82,60	43,50	38,70	47,50	24,20
1993	30,60	10,50	29,10	67,50	189,50	47,30	41,80	27,60	118,90	60,60	70,70	12,60
1994	13,70	37,30	19,60	81,60	82,40	33,60	44,40	41,70	83,90	73,40	87,10	9,90
1995	14,20	26,10	27,80	93,80	68,20	56,20	45,20	203,50	156,00	179,10	17,60	14,30
1996	7,70	42,50	67,60	34,90	40,30	93,80	63,90	70,80	61,50	113,30	36,00	6,10
1998	15,90	1,50	33,10	136,50	102,50	93,10	33,60	60,00	106,20	112,80	67,42	46,60
1999	15,70	32,50	16,00	108,70	25,90	62,20	48,10	87,40	107,00	97,60	118,30	15,20
2000	23,50	55,10	16,40	34,10	32,10	41,10	49,40	33,00	120,20	82,80	81,90	14,40
2001	1,30	31,60	48,30	6,20	62,20	45,10	39,60	45,00	78,80	80,50	17,40	27,70
2002	15,90	7,00	29,30	71,50	71,40	93,50	38,70	28,10	84,70	48,60	2,50	14,00
2003	3,40	7,40	38,70	86,90	37,20	69,50	68,90	49,30	80,80	124,30	50,30	29,60
2004	21,30	5,20	26,40	88,90	104,20	56,20	37,40	46,10	156,10	108,40	61,00	12,90
2005	23,00	28,30	5,40	34,90	134,90	107,00	39,00	40,20	62,70	145,90	119,10	10,50
2006	19,40	27,40	56,00	117,20	180,60	48,80	65,30	92,00	52,00	99,10	27,10	6,30
2007	14,60	13,90	60,20	38,40	46,70	62,90	45,90	153,50	102,20	136,00	38,00	12,20
2008	22,70	8,80	19,80	106,30	91,10	49,60	84,80	97,20	99,10	98,20	93,30	1,20
2011	16,10	48,00	88,70	184,90	169,90	109,60	41,90	118,10	86,80	88,40	95,30	33,50
2014	15,60	30,30	25,20	35,60	47,20	72,60	43,60	36,10	48,70	150,20	56,20	13,10
					(Calculo E	TR					
Año	Enr	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985	18,494	11,583	14,205	14,998	14,395	10,163	16,556	15,474	16,632	11,538	15,051	23,468
1986	15,942	17,635	14,239	17,863	15,458	8,044	11,878	6,149	15,730	12,377	13,366	20,556
1987	11,548	9,284	18,433	17,239	16,068	9,972	13,526	17,836	19,345	12,038	19,791	13,986
1988	11,147	19,237	22,020	16,430	18,045	15,752	14,616	12,135	20,351	18,733	17,113	16,666
1989	10,014	12,212	18,795	11,688	11,489	12,883	13,851	18,312	16,646	18,388	15,629	23,666
1990	11,853	13,721	11,513	12,004	10,801	12,942	13,527	16,991	19,972	18,174	15,956	20,065
1991	19,003	7,890	22,615	16,109	16,422	15,354	11,393	11,140	17,952	15,923	15,629	12,780
1992	6,393	3,288	1,300	15,048	16,426	14,327	8,752	14,223	14,336	16,517	18,229	17,634
1993	17,626	9,938	14,178	19,061	12,408	9,994	14,639	16,926	16,156	14,308	16,837	11,427
1994	12,137	14,291	13,577	12,914	9,219	12,254	13,912	15,349	14,785	20,217	20,354	9,282
1995	13,017	18,854	14,473	16,771	14,816	14,465	17,238	12,372	19,687	14,254	14,150	13,026
1996	7,512	16,264	17,109	15,938	11,843	11,969	12,829	17,503	14,996	13,802	14,807	5,985
1998	13,957	1,499	13,834	12,939	13,005	10,104	12,632	14,684	16,664	17,036	19,957	16,080
1999	13,913	12,161	12,588	10,102	16,179	10,449	14,947	12,906	12,163	15,210	14,262	12,318

					C	Calculo E	TR					
Año	Enr	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
2000	14,220	15,363	12,279	14,730	12,758	11,217	16,516	16,386	15,582	15,379	20,625	12,379
2001	1,300	17,243	14,659	5,767	11,588	8,939	14,794	11,702	14,808	13,748	13,138	17,504
2002	13,923	6,908	16,279	12,659	11,327	9,350	12,234	15,871	20,905	20,318	2,495	11,900
2003	3,395	7,176	18,558	13,890	13,828	15,593	14,944	18,581	15,845	14,542	19,126	18,720
2004	16,305	5,172	18,065	14,213	12,466	15,657	14,926	14,120	13,296	18,164	19,086	11,426
2005	15,768	19,756	5,372	13,384	13,391	12,646	16,891	13,989	15,641	15,265	18,345	10,034
2006	14,890	19,944	15,186	8,263	13,447	14,585	9,437	17,629	19,288	17,508	16,149	6,135
2007	12,976	12,851	16,350	18,159	14,153	13,582	18,269	15,151	16,740	15,488	17,504	10,721
2008	16,602	8,272	14,063	16,899	14,761	15,698	14,692	15,249	17,015	19,463	18,829	1,200
2011	13,745	17,282	10,898	15,100	13,611	13,551	15,151	22,449	13,281	12,799	13,760	18,405
2014	13,392	17,263	18,228	13,052	16,441	10,430	12,667	18,205	15,489	17,331	18,876	11,525

Tabla 50. Prestación (P) y evapotranspiración real ETR Berlín

						Cachir	i					
					F	Precipitac	ión					
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1985	13,1	66,8	74,8	100,9	177,2	52,8	69,1	118,0	136,1	157,2	81,7	13,1
1986	44,7	76,0	62,4	309,1	208,4	83,3	6,9	27,0	159,9	327,3	89,5	6,9
1987	13,0	2,3	24,2	98,3	176,7	64,3	39,5	81,8	144,9	320,1	155,7	11,4
1988	3,8	116,7	28,4	148,9	109,9	127,0	27,9	250,1	187,4	303,6	155,0	43,5
1989	15,1	37,5	108,3	22,4	112,4	35,5	24,0	91,7	228,6	137,1	33,0	105,3
1990	15,2	43,5	77,1	149,9	36,6	76,1	20,6	108,0	95,9	387,6	157,2	84,8
1991	18,5	1,1	98,8	84,4	161,3	51,7	8,7	27,2	85,2	103,4	137,1	5,8
1992	8,6	19,7	3,2	57,9	111,3	23,4	41,7	72,0	89,5	31,3	98,1	16,6
1993	33,8	9,6	16,1	173,2	198,3	41,1	27,6	16,1	168,5	84,4	110,1	19,0
1994	14,7	50,5	45,1	185,6	159,1	17,1	38,7	36,4	120,2	252,3	132,5	27,1
1995	17,4	17,2	109,9	105,0	207,3	115,7	69,3	172,0	194,3	261,2	19,3	16,8
1996	15,8	34,8	125,7	78,6	86,8	93,2	233,9	127,4	159,1	245,8	137,1	26,0
1998	12,2	17,7	62,4	183,8	145,2	91,6	45,1	87,8	149,5	227,4	52,8	98,2
1999	9,5	107,2	28,1	214,1	165,2	56,9	42,2	132,0	179,8	180,5	171,8	41,0
2000	17,2	21,7	33,8	24,3	72,0	80,6	56,7	15,3	186,1	98,4	127,6	45,1
2001	23,7	23,1	59,1	15,0	126,0	23,2	16,6	26,6	120,5	137,8	68,6	32,5
2002	0,2	16,0	72,6	157,1	175,0	68,5	8,6	16,1	197,3	112,1	14,5	98,7
2003	15,5	8,4	39,1	191,0	32,0	115,6	46,4	138,7	175,0	233,4	114,1	58,2
2004	16,1	26,4	88,1	136,2	114,0	17,1	30,3	59,5	186,4	177,5	148,2	9,7
2005	23,1	8,8	0,0	78,8	236,0	133,5	103,0	81,0	130,0	248,7	275,5	23,4
2006	17,1	15,7	110,8	192,5	181,0	82,6	31,8	121,1	77,3	148,5	73,3	1,8
2007	19,1	0,8	81,6	164,1	145,0	27,5	83,9	169,1	110,1	359,3	50,9	26,0
2008	56,2	39,6	28,9	100,9	222,0	43,2	73,9	198,8	165,5	201,3	239,4	5,8

Año Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic 2011 8.7 82,11 140,2 315,5 332,0 100,7 67,3 98,3 109,9 149,7 165,2 92,7 2014 6.6 22,8 51,6 85,3 100,0 10,0 5,8 72,4 51,3 247,6 123,5 39,8 21,9 149,7 165,2 92,7 20,1 4 6,6 22,8 51,6 85,3 100,0 10,0 5,8 72,4 51,3 247,6 123,5 39,8 21,9 21,9 21,9 21,9 21,9 21,9 21,9 21,9							Cachir						
2011 8,7 82,1 140,2 315,5 332,0 100,7 67,3 98,3 109,9 149,7 165,2 92,7 2014 6,6 22,8 51,6 85,3 100,0 10,0 5,8 72,4 51,3 247,6 123,5 39,8 Calculo ETR Calculo ETR Año Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic 1985 12,286 29,825 26,048 24,708 21,987 20,528 21,139 21,620 22,421 16,606 16,665 12,205 1986 24,987 23,910 22,0345 24,662 24,279 24,356 21,766 28,512 23,192 15,919 27,197 10,902 1987 12,474 2,299 18,466 25,280 24,279 24,356 21,766 28,512 23,192 15,919 27,197 10,902 1988		_					•		-		_		
Año Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic						May				Sep		Nov	
Calculo ETR Año Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic 1985 12,286 29,825 26,048 24,708 21,987 20,528 21,139 21,620 22,421 16,606 16,665 12,205 1986 24,987 23,910 22,038 14,655 19,604 21,429 6,818 19,985 20,545 14,819 24,634 6,860 1987 12,474 2,299 18,466 25,280 24,279 24,356 21,766 28,512 23,192 15,919 27,197 10,902 1988 3,795 30,575 22,945 22,014 28,147 18,267 18,424 12,014 15,998 19,117 17,667 21,778 1990 14,015 22,800 22,743 21,652 20,558 28,633 17,144 29,109 25,425 20,246 22,454 28,725 1991 16,677 </th <th>2011</th> <th>8,7</th> <th>82,1</th> <th>140,2</th> <th>315,5</th> <th>332,0</th> <th>100,7</th> <th>67,3</th> <th>98,3</th> <th>109,9</th> <th>149,7</th> <th>165,2</th> <th>92,7</th>	2011	8,7	82,1	140,2	315,5	332,0	100,7	67,3	98,3	109,9	149,7	165,2	92,7
Año Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic 1985 12,286 29,825 26,048 24,708 21,987 20,528 21,139 21,620 22,421 16,606 16,665 12,205 1986 24,987 23,910 22,038 14,655 19,604 21,429 6,818 19,985 20,545 14,819 24,634 6,860 1987 12,474 2,299 18,466 25,280 24,279 24,356 21,766 28,512 23,192 15,919 27,197 10,902 1988 3,795 30,575 22,945 22,014 28,147 18,267 18,424 12,014 15,998 19,117 17,667 21,778 1999 14,015 22,800 22,743 21,652 20,558 28,633 17,144 29,109 25,425 20,246 22,454 28,725 1991 16,871 1,100 32,040 <	2014	6,6	22,8	51,6	85,3	100,0	10,0	5,8	72,4	51,3	247,6	123,5	39,8
1985 12,286 29,825 26,048 24,708 21,987 20,528 21,139 21,620 22,421 16,606 16,665 12,205 1986 24,987 23,910 22,038 14,655 19,604 21,429 6,818 19,985 20,545 14,819 24,634 6,860 1987 12,474 2,299 18,466 25,280 24,279 24,356 21,766 28,512 23,192 15,919 27,197 10,902 1988 3,795 30,575 22,945 22,014 28,147 18,267 18,424 12,014 15,998 19,117 17,667 21,778 1989 13,916 21,780 24,341 18,901 22,176 22,616 18,485 27,187 21,000 22,829 20,872 30,218 1990 14,015 22,800 22,743 21,652 20,558 28,633 17,144 29,109 25,425 20,246 22,454 28,725 1991 16,671 1,000 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>C</th> <th>Calculo E</th> <th>TR</th> <th></th> <th></th> <th></th> <th></th> <th></th>						C	Calculo E	TR					
1986 24,987 23,910 22,038 14,655 19,604 21,429 6,818 19,985 20,545 14,819 24,634 6,860 1987 12,474 2,299 18,466 25,280 24,279 24,356 21,766 28,512 23,192 15,919 27,197 10,902 1988 3,795 30,575 22,945 22,014 28,147 18,267 18,424 12,014 16,998 19,117 17,667 21,778 1989 13,916 21,780 24,341 18,901 22,176 22,616 18,485 27,187 21,000 22,829 20,872 30,218 1990 14,015 22,800 22,743 21,652 20,558 28,633 17,144 29,109 25,425 20,246 22,454 28,725 1991 16,671 1,100 32,040 26,726 27,623 24,189 8,493 18,961 22,603 21,310 21,120 5,748 1992 8,458 16,793	Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1987 12,474 2,299 18,466 25,280 24,279 24,356 21,766 28,512 23,192 15,919 27,197 10,902 1988 3,795 30,575 22,945 22,014 28,147 18,267 18,424 12,014 15,998 19,117 17,667 21,778 1989 13,916 21,780 24,341 18,901 22,176 22,616 18,485 27,187 21,000 22,829 20,872 30,218 1990 14,015 22,800 22,743 21,652 20,558 28,633 17,144 29,109 25,425 20,246 22,454 28,725 1991 16,871 1,100 32,040 26,726 27,623 24,189 8,493 18,961 22,603 21,310 21,120 5,748 1992 8,458 16,793 3,196 22,893 24,771 22,744 20,739 13,524 19,542 17,613 21,484 16,634 1993 13,556 21,546 <th>1985</th> <th>12,286</th> <th>29,825</th> <th>26,048</th> <th>24,708</th> <th>21,987</th> <th>20,528</th> <th>21,139</th> <th>21,620</th> <th>22,421</th> <th>16,606</th> <th>16,665</th> <th>12,205</th>	1985	12,286	29,825	26,048	24,708	21,987	20,528	21,139	21,620	22,421	16,606	16,665	12,205
1988 3,795 30,575 22,945 22,014 28,147 18,267 18,424 12,014 15,998 19,117 17,667 21,778 1989 13,916 21,780 24,341 18,901 22,176 22,616 18,485 27,187 21,000 22,829 20,872 30,218 1990 14,015 22,800 22,743 21,652 20,558 28,633 17,144 29,109 25,425 20,246 22,454 28,725 1991 16,871 1,100 32,040 26,726 27,623 24,189 8,493 18,961 22,603 21,310 21,120 5,748 1992 8,458 16,793 3,196 22,893 24,465 18,516 21,203 27,514 22,870 18,665 22,785 14,894 1993 23,120 9,373 14,088 16,895 15,771 22,744 20,739 13,524 19,542 17,613 21,484 16,634 1994 13,566 21,546 <th>1986</th> <th>24,987</th> <th>23,910</th> <th>22,038</th> <th>14,655</th> <th>19,604</th> <th>21,429</th> <th>6,818</th> <th>19,985</th> <th>20,545</th> <th>14,819</th> <th>24,634</th> <th>6,860</th>	1986	24,987	23,910	22,038	14,655	19,604	21,429	6,818	19,985	20,545	14,819	24,634	6,860
1989 13,916 21,780 24,341 18,901 22,176 22,616 18,485 27,187 21,000 22,829 20,872 30,218 1990 14,015 22,800 22,743 21,652 20,558 28,633 17,144 29,109 25,425 20,246 22,454 28,725 1991 16,871 1,100 32,040 26,726 27,623 24,189 8,493 18,961 22,603 21,310 21,120 5,748 1992 8,458 16,793 3,196 22,893 24,465 18,516 21,203 27,514 22,870 18,665 22,785 14,894 1993 23,120 9,373 14,088 16,895 15,771 22,744 20,739 13,524 19,542 17,613 21,948 16,634 1994 13,556 21,546 22,893 20,778 20,949 15,073 24,684 23,037 23,459 21,743 21,456 20,558 1995 16,177 15,090 <th>1987</th> <th>12,474</th> <th>2,299</th> <th>18,466</th> <th>25,280</th> <th>24,279</th> <th>24,356</th> <th>21,766</th> <th>28,512</th> <th>23,192</th> <th>15,919</th> <th>27,197</th> <th>10,902</th>	1987	12,474	2,299	18,466	25,280	24,279	24,356	21,766	28,512	23,192	15,919	27,197	10,902
1990 14,015 22,800 22,743 21,652 20,558 28,633 17,144 29,109 25,425 20,246 22,454 28,725 1991 16,871 1,100 32,040 26,726 27,623 24,189 8,493 18,961 22,603 21,310 21,120 5,748 1992 8,458 16,793 3,196 22,893 24,465 18,516 21,203 27,514 22,870 18,665 22,785 14,894 1993 23,120 9,373 14,088 16,895 15,771 22,744 20,739 13,524 19,542 17,613 21,948 16,634 1994 13,556 21,546 22,893 20,778 20,949 15,073 24,684 23,037 23,459 21,743 21,456 20,558 1995 16,177 15,090 27,617 21,804 25,607 23,832 24,768 15,314 21,952 15,696 15,966 14,835 1996 14,489 21,5718 </th <th>1988</th> <th>3,795</th> <th>30,575</th> <th>22,945</th> <th>22,014</th> <th>28,147</th> <th>18,267</th> <th>18,424</th> <th>12,014</th> <th>15,998</th> <th>19,117</th> <th>17,667</th> <th>21,778</th>	1988	3,795	30,575	22,945	22,014	28,147	18,267	18,424	12,014	15,998	19,117	17,667	21,778
1991 16,871 1,100 32,040 26,726 27,623 24,189 8,493 18,961 22,603 21,310 21,120 5,748 1992 8,458 16,793 3,196 22,893 24,465 18,516 21,203 27,514 22,870 18,665 22,785 14,894 1993 23,120 9,373 14,088 16,895 15,771 22,744 20,739 13,524 19,542 17,613 21,948 16,634 1994 13,556 21,546 22,893 20,778 20,949 15,073 24,684 23,037 23,459 21,743 21,456 20,558 1995 16,177 15,090 27,617 21,804 25,607 23,832 24,768 15,314 21,952 15,696 15,966 14,855 1996 14,489 21,374 25,365 26,153 19,955 20,909 23,277 22,649 20,597 20,743 21,197 19,966 1998 11,921 15,718 <th>1989</th> <th>13,916</th> <th>21,780</th> <th>24,341</th> <th>18,901</th> <th>22,176</th> <th>22,616</th> <th>18,485</th> <th>27,187</th> <th>21,000</th> <th>22,829</th> <th>20,872</th> <th>30,218</th>	1989	13,916	21,780	24,341	18,901	22,176	22,616	18,485	27,187	21,000	22,829	20,872	30,218
1992 8,458 16,793 3,196 22,893 24,465 18,516 21,203 27,514 22,870 18,665 22,785 14,894 1993 23,120 9,373 14,088 16,895 15,771 22,744 20,739 13,524 19,542 17,613 21,948 16,634 1994 13,556 21,546 22,893 20,778 20,949 15,073 24,684 23,037 23,459 21,743 21,456 20,558 1995 16,177 15,090 27,617 21,804 25,607 23,832 24,768 15,314 21,952 15,696 15,966 14,835 1996 14,489 21,374 25,365 26,153 19,955 20,909 23,277 22,649 20,597 20,743 21,197 19,966 1998 11,921 15,718 26,765 23,567 20,126 24,285 24,152 23,901 21,820 21,715 18,659 22,685 1999 9,280 17,818<	1990	14,015	22,800	22,743	21,652	20,558	28,633	17,144	29,109	25,425	20,246	22,454	28,725
1993 23,120 9,373 14,088 16,895 15,771 22,744 20,739 13,524 19,542 17,613 21,948 16,634 1994 13,556 21,546 22,893 20,778 20,949 15,073 24,684 23,037 23,459 21,743 21,456 20,558 1995 16,177 15,090 27,617 21,804 25,607 23,832 24,768 15,314 21,952 15,696 15,966 14,835 1996 14,489 21,374 25,365 26,153 19,955 20,909 23,277 22,649 20,597 20,743 21,197 19,966 1998 11,921 15,718 26,765 23,567 20,126 24,285 24,152 23,901 21,820 21,715 18,659 22,685 1999 9,280 17,818 19,564 21,304 31,302 20,176 23,873 20,736 14,955 15,382 23,616 22,489 2001 19,685 18,52	1991	16,871	1,100	32,040	26,726	27,623	24,189	8,493	18,961	22,603	21,310	21,120	5,748
1994 13,556 21,546 22,893 20,778 20,949 15,073 24,684 23,037 23,459 21,743 21,456 20,558 1995 16,177 15,090 27,617 21,804 25,607 23,832 24,768 15,314 21,952 15,696 15,966 14,835 1996 14,489 21,374 25,365 26,153 19,955 20,909 23,277 22,649 20,597 20,743 21,197 19,966 1998 11,921 15,718 26,765 23,567 20,126 24,285 24,152 23,901 21,820 21,715 18,659 22,685 1999 9,280 17,818 19,564 21,304 31,302 20,176 23,873 20,736 14,955 15,382 23,616 22,496 2000 14,290 16,571 22,650 18,595 19,746 25,527 26,557 13,621 17,331 19,319 23,942 25,425 2001 19,685 18,5	1992	8,458	16,793	3,196	22,893	24,465	18,516	21,203	27,514	22,870	18,665	22,785	14,894
1995 16,177 15,090 27,617 21,804 25,607 23,832 24,768 15,314 21,952 15,696 15,966 14,835 1996 14,489 21,374 25,365 26,153 19,955 20,909 23,277 22,649 20,597 20,743 21,197 19,966 1998 11,921 15,718 26,765 23,567 20,126 24,285 24,152 23,901 21,820 21,715 18,659 22,685 1999 9,280 17,818 19,564 21,304 31,302 20,176 23,873 20,736 14,955 15,382 23,616 22,496 2000 14,290 16,571 22,650 18,595 19,746 25,527 26,557 13,621 17,331 19,319 23,942 25,425 2001 19,685 18,525 25,081 13,339 23,996 19,093 14,626 20,552 23,540 21,653 23,446 21,834 2002 10,000 14,6	1993	23,120	9,373	14,088	16,895	15,771	22,744	20,739	13,524	19,542	17,613	21,948	16,634
1996 14,489 21,374 25,365 26,153 19,955 20,909 23,277 22,649 20,597 20,743 21,197 19,966 1998 11,921 15,718 26,765 23,567 20,126 24,285 24,152 23,901 21,820 21,715 18,659 22,685 1999 9,280 17,818 19,564 21,304 31,302 20,176 23,873 20,736 14,955 15,382 23,616 22,496 2000 14,290 16,571 22,650 18,595 19,746 25,527 26,557 13,621 17,331 19,319 23,942 25,425 2001 19,685 18,525 25,081 13,339 23,996 19,093 14,626 20,552 23,540 21,653 23,446 21,834 2002 0,000 14,692 24,940 22,311 26,819 22,415 8,415 14,831 25,670 26,645 13,137 31,851 2003 14,717 8,265<	1994	13,556	21,546	22,893	20,778	20,949	15,073	24,684	23,037	23,459	21,743	21,456	20,558
1998 11,921 15,718 26,765 23,567 20,126 24,285 24,152 23,901 21,820 21,715 18,659 22,685 1999 9,280 17,818 19,564 21,304 31,302 20,176 23,873 20,736 14,955 15,382 23,616 22,496 2000 14,290 16,571 22,650 18,595 19,746 25,527 26,557 13,621 17,331 19,319 23,942 25,425 2001 19,685 18,525 25,081 13,339 23,996 19,093 14,626 20,552 23,540 21,653 23,446 21,834 2002 0,000 14,692 24,940 22,311 26,819 22,415 8,415 14,831 25,670 26,645 13,137 31,851 2003 14,717 8,265 25,260 19,721 21,301 22,448 24,410 29,546 18,626 13,840 20,510 24,775 2004 14,409 21,946<	1995	16,177	15,090	27,617	21,804	25,607	23,832	24,768	15,314	21,952	15,696	15,966	14,835
1999 9,280 17,818 19,564 21,304 31,302 20,176 23,873 20,736 14,955 15,382 23,616 22,496 2000 14,290 16,571 22,650 18,595 19,746 25,527 26,557 13,621 17,331 19,319 23,942 25,425 2001 19,685 18,525 25,081 13,339 23,996 19,093 14,626 20,552 23,540 21,653 23,446 21,834 2002 0,000 14,692 24,940 22,311 26,819 22,415 8,415 14,831 25,670 26,645 13,137 31,851 2003 14,717 8,265 25,260 19,721 21,301 22,448 24,410 29,546 18,626 13,840 20,510 24,775 2004 14,409 21,946 37,519 17,141 16,195 15,552 21,843 30,003 16,206 18,494 22,056 9,380 2005 17,979 8,557 <th>1996</th> <th>14,489</th> <th>21,374</th> <th>25,365</th> <th>26,153</th> <th>19,955</th> <th>20,909</th> <th>23,277</th> <th>22,649</th> <th>20,597</th> <th>20,743</th> <th>21,197</th> <th>19,966</th>	1996	14,489	21,374	25,365	26,153	19,955	20,909	23,277	22,649	20,597	20,743	21,197	19,966
2000 14,290 16,571 22,650 18,595 19,746 25,527 26,557 13,621 17,331 19,319 23,942 25,425 2001 19,685 18,525 25,081 13,339 23,996 19,093 14,626 20,552 23,540 21,653 23,446 21,834 2002 0,000 14,692 24,940 22,311 26,819 22,415 8,415 14,831 25,670 26,645 13,137 31,851 2003 14,717 8,265 25,260 19,721 21,301 22,448 24,410 29,546 18,626 13,840 20,510 24,775 2004 14,409 21,946 37,519 17,141 16,195 15,552 21,843 30,003 16,206 18,494 22,056 9,380 2005 17,979 8,557 0,000 25,262 25,465 23,559 27,681 24,998 23,417 20,677 19,522 19,025 2006 15,403 14,567 <th>1998</th> <th>11,921</th> <th>15,718</th> <th>26,765</th> <th>23,567</th> <th>20,126</th> <th>24,285</th> <th>24,152</th> <th>23,901</th> <th>21,820</th> <th>21,715</th> <th>18,659</th> <th>22,685</th>	1998	11,921	15,718	26,765	23,567	20,126	24,285	24,152	23,901	21,820	21,715	18,659	22,685
2001 19,685 18,525 25,081 13,339 23,996 19,093 14,626 20,552 23,540 21,653 23,446 21,834 2002 0,000 14,692 24,940 22,311 26,819 22,415 8,415 14,831 25,670 26,645 13,137 31,851 2003 14,717 8,265 25,260 19,721 21,301 22,448 24,410 29,546 18,626 13,840 20,510 24,775 2004 14,409 21,946 37,519 17,141 16,195 15,552 21,843 30,003 16,206 18,494 22,056 9,380 2005 17,979 8,557 0,000 25,262 25,465 23,559 27,681 24,998 23,417 20,677 19,522 19,025 2006 15,403 14,567 23,728 19,364 24,241 25,361 21,095 29,499 25,734 18,326 23,585 1,799 2007 17,460 0,000	1999	9,280	17,818	19,564	21,304	31,302	20,176	23,873	20,736	14,955	15,382	23,616	22,496
2002 0,000 14,692 24,940 22,311 26,819 22,415 8,415 14,831 25,670 26,645 13,137 31,851 2003 14,717 8,265 25,260 19,721 21,301 22,448 24,410 29,546 18,626 13,840 20,510 24,775 2004 14,409 21,946 37,519 17,141 16,195 15,552 21,843 30,003 16,206 18,494 22,056 9,380 2005 17,979 8,557 0,000 25,262 25,465 23,559 27,681 24,998 23,417 20,677 19,522 19,025 2006 15,403 14,567 23,728 19,364 24,241 25,361 21,095 29,499 25,734 18,326 23,585 1,799 2007 17,460 0,000 21,624 25,234 19,086 19,914 28,983 16,234 21,166 15,703 17,445 18,676 2008 32,081 25,320	2000	14,290	16,571	22,650	18,595	19,746	25,527	26,557	13,621	17,331	19,319	23,942	25,425
2003 14,717 8,265 25,260 19,721 21,301 22,448 24,410 29,546 18,626 13,840 20,510 24,775 2004 14,409 21,946 37,519 17,141 16,195 15,552 21,843 30,003 16,206 18,494 22,056 9,380 2005 17,979 8,557 0,000 25,262 25,465 23,559 27,681 24,998 23,417 20,677 19,522 19,025 2006 15,403 14,567 23,728 19,364 24,241 25,361 21,095 29,499 25,734 18,326 23,585 1,799 2007 17,460 0,000 21,624 25,234 19,086 19,914 28,983 16,234 21,166 15,703 17,445 18,676 2008 32,081 25,320 21,162 26,075 22,425 23,489 25,027 20,901 16,269 24,096 18,411 5,737 2011 8,480 26,259	2001	19,685	18,525	25,081	13,339	23,996	19,093	14,626	20,552	23,540	21,653	23,446	21,834
2004 14,409 21,946 37,519 17,141 16,195 15,552 21,843 30,003 16,206 18,494 22,056 9,380 2005 17,979 8,557 0,000 25,262 25,465 23,559 27,681 24,998 23,417 20,677 19,522 19,025 2006 15,403 14,567 23,728 19,364 24,241 25,361 21,095 29,499 25,734 18,326 23,585 1,799 2007 17,460 0,000 21,624 25,234 19,086 19,914 28,983 16,234 21,166 15,703 17,445 18,676 2008 32,081 25,320 21,162 26,075 22,425 23,489 25,027 20,901 16,269 24,096 18,411 5,737 2011 8,480 26,259 21,299 19,263 15,178 17,471 23,359 26,898 22,772 15,796 13,743 19,283	2002	0,000	14,692	24,940	22,311	26,819	22,415	8,415	14,831	25,670	26,645	13,137	31,851
2005 17,979 8,557 0,000 25,262 25,465 23,559 27,681 24,998 23,417 20,677 19,522 19,025 2006 15,403 14,567 23,728 19,364 24,241 25,361 21,095 29,499 25,734 18,326 23,585 1,799 2007 17,460 0,000 21,624 25,234 19,086 19,914 28,983 16,234 21,166 15,703 17,445 18,676 2008 32,081 25,320 21,162 26,075 22,425 23,489 25,027 20,901 16,269 24,096 18,411 5,737 2011 8,480 26,259 21,299 19,263 15,178 17,471 23,359 26,898 22,772 15,796 13,743 19,283	2003	14,717	8,265	25,260	19,721	21,301	22,448	24,410	29,546	18,626	13,840	20,510	24,775
2006 15,403 14,567 23,728 19,364 24,241 25,361 21,095 29,499 25,734 18,326 23,585 1,799 2007 17,460 0,000 21,624 25,234 19,086 19,914 28,983 16,234 21,166 15,703 17,445 18,676 2008 32,081 25,320 21,162 26,075 22,425 23,489 25,027 20,901 16,269 24,096 18,411 5,737 2011 8,480 26,259 21,299 19,263 15,178 17,471 23,359 26,898 22,772 15,796 13,743 19,283	2004	14,409	21,946	37,519	17,141	16,195	15,552	21,843	30,003	16,206	18,494	22,056	9,380
2007 17,460 0,000 21,624 25,234 19,086 19,914 28,983 16,234 21,166 15,703 17,445 18,676 2008 32,081 25,320 21,162 26,075 22,425 23,489 25,027 20,901 16,269 24,096 18,411 5,737 2011 8,480 26,259 21,299 19,263 15,178 17,471 23,359 26,898 22,772 15,796 13,743 19,283	2005	17,979	8,557	0,000	25,262	25,465	23,559	27,681	24,998	23,417	20,677	19,522	19,025
2008 32,081 25,320 21,162 26,075 22,425 23,489 25,027 20,901 16,269 24,096 18,411 5,737 2011 8,480 26,259 21,299 19,263 15,178 17,471 23,359 26,898 22,772 15,796 13,743 19,283	2006	15,403	14,567	23,728	19,364	24,241	25,361	21,095	29,499	25,734	18,326	23,585	1,799
2011 8,480 26,259 21,299 19,263 15,178 17,471 23,359 26,898 22,772 15,796 13,743 19,283	2007	17,460	0,000	21,624	25,234	19,086	19,914	28,983	16,234	21,166	15,703	17,445	18,676
	2008	32,081	25,320	21,162	26,075	22,425	23,489	25,027	20,901	16,269	24,096	18,411	5,737
2014 6,569 18,597 28,229 23,190 25,191 9,713 5,773 26,943 21,287 21,047 15,161 17,424	2011	8,480	26,259	21,299	19,263	15,178	17,471	23,359	26,898	22,772	15,796	13,743	19,283
	2014	6,569	18,597	28,229	23,190	25,191	9,713	5,773	26,943	21,287	21,047	15,161	17,424

Tabla 51. Prestación (P) y evapotranspiración real ETR Cachiri

Con los datos de precipitación y Evapotranspiración se calcula la oferta hídrica total superficial en cada una de las microcuencas Nivel III de la Cuenca Nivel I alto Lebrija mediante la ecuación consignada en el numeral 5.3.1.3

En las Tablas 52 a la 71, se muestra la oferta hídrica total superficial o el caudal calculado en los meses de cada año en cada una de las microcuencas Nivel III.

Mi	crocue	nca Nive	el III		Códi	igo			Á	rea (Km	2)		E	Estació	n
Le	ebrija Al	to Direc	tos		2319-01	-01-01				123,90				Cachiri	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	2,348	0,914	3,673	5,600	4,984	1,981	3,657	3,175	5,047	8,002	3,594	3,401	46,375	3,865	8,002
1986	1,786	1,304	3,467	11,530	6,621	1,662	1,883	2,310	6,165	12,269	3,284	0,173	52,455	4,371	12,269
1987	1,040	0,399	6,851	7,235	7,340	3,169	4,164	1,742	4,704	12,307	5,096	0,791	54,839	4,570	12,307
1988	0,049	2,522	1,106	6,475	3,153	3,880	2,152	9,804	6,457	11,202	12,307	0,959	60,065	5,005	12,307
1989	0,808	0,510	9,208	3,272	4,958	1,802	1,639	2,381	6,652	6,088	1,054	1,946	40,318	3,360	9,208
1990	0,372	2,901	9,496	10,558	2,984	3,206	0,561	2,270	2,788	8,489	5,927	5,185	54,737	4,561	10,558
1991	0,076	0,133	5,830	6,162	6,511	1,526	1,484	1,770	5,304	4,856	7,127	0,189	40,968	3,414	7,127
1992	0,308	1,228	0,388	4,607	8,500	2,220	3,340	2,062	3,012	1,951	7,636	1,985	37,238	3,103	8,500
1993	0,492	0,282	3,097	9,875	8,955	1,575	1,702	1,627	5,462	4,755	8,952	0,450	47,224	3,935	9,875
1994	1,927	0,901	3,053	9,928	4,752	0,392	0,999	1,506	5,813	5,641	10,588	0,929	46,428	3,869	10,588
1995	0,040	1,506	6,888	6,021	4,848	4,398	2,310	9,544	5,012	10,494	1,046	0,859	52,966	4,414	10,494
1996	0,424	3,450	8,183	2,236	4,012	5,407	5,905	3,059	6,463	9,428	4,415	0,504	53,487	4,457	9,428
1998	1,121	5,870	2,023	6,064	7,517	2,103	2,784	2,760	5,726	10,200	4,726	3,720	54,613	4,551	10,200
1999	0,741	3,830	1,797	6,230	4,236	4,302	3,329	4,121	8,190	7,676	8,459	1,410	54,322	4,527	8,459
2000	5,948	6,597	1,481	3,159	4,002	3,091	1,398	0,554	8,190	4,637	4,925	0,403	44,386	3,699	8,190
2001	1,483	0,345	4,413	1,597	3,764	1,674	1,452	0,730	4,694	10,048	6,043	2,013	38,255	3,188	10,048
2002	0,075	0,046	6,022	8,559	7,900	4,059	0,944	0,269	3,991	5,691	1,536	1,485	40,578	3,381	8,559
2003	0,103	5,081	8,329	8,541	0,991	3,878	2,545	2,477	8,453	12,151	7,847	3,409	63,806	5,317	12,151
2004	1,146	1,223	1,888	7,719	7,623	1,144	1,590	0,948	6,093	6,763	6,766	1,720	44,621	3,718	7,719
2005	3,547	10,498	0,566	4,993	9,192	4,347	2,315	1,661	6,335	13,456	9,057	1,608	67,575	5,631	13,456
2006	1,500	0,857	6,716	8,727	5,544	5,576	1,240	3,322	2,088	10,586	4,502	0,938	51,597	4,300	10,586
2007	0,584	0,625	4,445	2,778	5,225	1,547	1,446	7,486	4,423	11,818	1,576	0,248	42,201	3,517	11,818
2008	0,581	7,571	7,741	3,260	10,092	1,411	2,248	5,628	6,195	6,012	12,758	0,064	63,559	5,297	12,758
2011	0,412	2,845	6,520	12,820	11,755	3,844	1,597	4,528	3,783	13,488	8,089	5,158	74,838	6,237	13,488
2014	0,196	3,714	0,982	5,067	3,336	1,008	1,202	3,428	3,044	14,077	6,094	0,488	42,636	3,553	14,077

Tabla 52. Oferta hídrica total m3/s microcuenca Nivel III Lebrija Alto Directos

Micro	cuenca	Nivel III		Códig	0			Área (Km2)				Estación		
Queb	rada La	Angula		2319-	01-01-0	2		187,5	218				Apto Palo	negro	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	0,647	0,059	0,361	0,707	0,132	0,177	0,553	0,218	0,258	0,682	0,358	0,13	3 4,285	0,357	0,707
1986	0,425	0,017	0,539	0,782 0,580 0,157 0,346				0,225	0,298	1,111	0,239	0,00	1 4,719	0,393	1,111
1987	0,063	0,099	1,107	1, 1 1,111				0,244	0,266	0,568	0,410	0,002	2 5,897	0,491	1,334
1988	0,000	0,125	0,148	0,753	0,341	0,391	0,246	0,591	0,539	0,979	0,925	0,03	2 5,070	0,423	0,979
1989	0,000	0,000	1,252	0,584	7, 11, 17, 17, 17, 17, 17, 17, 17, 17, 1				0,580	0,268	0,130	0,22	4 4,185	0,349	1,252
1990	0,023	0,310	1,157	0,667	0,194	0,196	0,035	0,061	0,274	0,319	0,569	0,90	9 4,713	0,393	1,157

Micro	cuenca	Nivel III		Códig	0			Área (Km2)				Estación		
Queb	rada La	Angula	l	2319-	01-01-0	2		187,5	218				Apto Palo	negro	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1991	0,002	0,035	0,681	0,463	0,496	0,129	0,233	0,244	0,571	0,563	0,533	0,00	1 3,951	0,329	0,681
1992	0,007	0,155	0,058	0,416	0,409	0,157	0,522	0,252	0,393	0,097	0,891	0,263	3,621	0,302	0,891
1993	0,016	0,063	0,329	1,010	0,413	0,174	0,388	0,334	0,418	0,548	0,646	0,00	1 4,338	0,362	1,010
1994	0,332	0,100	0,455	0,641	0,717	0,021	0,179	0,201	0,486	0,290	1,181	0,178	3 4,782	0,399	1,181
1995	0,000	0,266	1,112	0,663	0,285	0,404	0,190	0,918	0,175	0,723	0,168	0,169	5,073	0,423	1,112
1996	0,071	0,376	1,222	0,278	0,237	0,659	0,474	0,074	0,761	1,053	0,378	0,014	5,597	0,466	1,222
1998	0,081	1,313	0,224	0,359	0,695	0,164	0,331	0,176	0,285	0,641	0,447	0,114	4 4,830	0,403	1,313
1999	0,128	0,379	0,189	0,271	0,300	0,186	0,646	0,199	0,739	0,684	0,682	0,198	3 4,601	0,383	0,739
2000	1,294	1,140	0,220	0,131	0,486	0,565	0,118	0,104	0,662	0,358	0,462	0,076	5,616	0,468	1,294
2001	0,347	0,043	0,248	0,200	0,436	0,329	0,143	0,130	0,306	1,107	0,942	0,37	1 4,602	0,384	1,107
2002	0,013	0,003	0,295	0,883	0,423	0,348	0,068	0,044	0,160	0,427	0,194	0,000	2,860	0,238	0,883
2003	0,009	0,992	1,382	0,423	0,119	0,364	0,453	0,156	0,664	0,745	1,053	0,434	4 6,794	0,566	1,382
2004	0,145	0,056	0,205	0,533	0,404	0,067	0,356	0,109	0,331	0,511	0,751	0,353	3 3,822	0,319	0,751
2005	0,423	1,411	0,153	0,685	0,443	0,100	0,183	0,098	0,765	1,355	0,750	0,443	6,809	0,567	1,411
2006	0,306	0,141	0,506	0,502	0,534	0,658	0,122	0,408	0,097	1,395	0,096	0,023	3 4,789	0,399	1,395
2007	0,140	0,131	0,698	0,317	0,806	0,109	0,093	0,482	0,331	0,674	0,171	0,05	1 4,005	0,334	0,806
2008	0,124	1,552	1,604	0,144	1,032	0,076	0,309	0,336	0,324	0,305	1,120	0,01	1 6,937	0,578	1,604
2011	0,025	0,346	0,299	0,860	0,918	0,377	0,238	0,563	0,388	2,191	0,396	0,50	5 7,107	0,592	2,191
2014	0,037	0,635	0,075	0,227	0,331	0,173	0,275	0,372	0,288	1,146	0,542	0,068	3 4,170	0,348	1,146

Tabla 53. Oferta hídrica total m3/s microcuenca Nivel III Quebrada La Angula

Mi	crocuer	ica Nive	el III		Cód	digo			Área	(Km2)			Esta	ación	
	Quebra	da Laja	s		2319-0	1-01-03			44,5	51649			Vivero	Surata	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	1,094	0,616	2,630	3,823	3,730	1,399	2,267	2,271	3,775	5,651	2,411	2,667	32,337	2,695	5,651
1986	0,879	0,978	2,160	8,119	4,521	1,133	1,213	1,796	4,561	8,394	2,333	0,151	36,240	3,020	8,394
1987	0,898	0,207	4,607	4,282	4,995	2,148	2,718	1,067	3,433	9,241	3,450	0,657	37,702	3,142	9,241
1988	0,042	1,836	0,750	4,283	2,058	2,563	1,578	7,156	4,447	7,551	9,051	0,757	42,073	3,506	9,051
1989	0,669	0,394	6,016	1,952	3,335	1,275	1,035	1,763	4,503	4,686	0,695	1,186	27,510	2,292	6,016
1990	0,281	1,957	6,684	7,736	2,353	2,359	0,467	1,737	1,927	6,009	3,998	3,038	38,547	3,212	7,736
1991	0,062	0,067	3,957	4,527	4,552	1,071	1,032	1,273	3,700	3,215	5,077	0,159	28,690	2,391	5,077
1992	0,247	0,862	0,247	3,439	6,424	1,648	2,249	1,389	1,962	1,497	5,268	1,302	26,534	2,211	6,424
1993	0,378	0,159	2,222	6,683	6,765	1,126	0,925	0,937	3,869	3,155	6,586	0,368	33,173	2,764	6,765
1994	1,266	0,588	1,900	7,349	2,811	0,327	0,607	1,017	4,150	3,945	7,154	0,553	31,667	2,639	7,349
1995	0,036	0,901	4,235	4,103	3,383	3,002	1,745	6,750	3,734	7,610	0,655	0,503	36,657	3,055	7,610
1996	0,265	2,412	5,068	1,413	3,072	3,687	4,023	2,338	4,199	6,136	3,006	0,388	36,007	3,001	6,136
1998	0,948	3,262	1,438	4,364	5,177	1,482	1,946	1,973	4,293	7,566	3,322	2,817	38,589	3,216	7,566
1999	0,450	2,551	1,300	4,519	2,864	3,345	1,926	3,040	5,859	5,250	5,968	0,901	37,973	3,164	5,968
2000	3,345	4,111	0,967	2,460	2,779	1,760	0,983	0,348	5,816	3,420	3,379	0,196	29,564	2,464	5,816

Mi	crocuer	ica Nive	el III		Cód	digo			Área	(Km2)			Esta	ción	
	Quebra	da Laja	S		2319-0	1-01-03			44,5	51649			Vivero	Surata	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
2001	0,766	0,238	3,453	1,073	2,380	1,021	1,141	0,463	3,383	6,921	3,794	1,166	25,801	2,150	6,921
2002	0,046	0,035	4,744	5,767	5,956	2,981	0,752	0,179	2,815	4,049	1,062	1,097	29,485	2,457	5,956
2003	0,083	3,115	5,435	6,363	0,681	2,746	1,545	1,675	5,946	8,984	5,169	2,200	43,940	3,662	8,984
2004	0,761	1,076	1,285	5,747	5,992	0,913	0,877	0,612	4,475	4,869	4,476	0,975	32,059	2,672	5,992
2005	2,505	7,728	0,266	3,236	6,841	3,392	1,568	1,164	4,180	9,353	6,248	0,740	47,220	3,935	9,353
2006	0,846	0,582	4,908	6,337	3,865	3,859	0,938	2,187	1,567	6,973	3,537	0,750	36,347	3,029	6,973
2007	0,297	0,370	2,725	1,658	3,145	1,270	0,989	5,504	3,234	8,418	1,059	0,124	28,794	2,399	8,418
2008	0,272	4,417	4,564	2,517	6,713	1,069	1,481	3,977	4,601	4,357	8,910	0,039	42,917	3,576	8,910
2011	0,310	1,815	4,850	9,043	8,123	2,743	0,945	3,040	2,530	8,217	5,969	3,470	51,055	4,255	9,043
2014	0,123	2,262	0,692	3,815	2,216	0,673	0,671	2,488	2,194	10,200	4,396	0,269	30,000	2,500	10,200

Tabla 54. Oferta hídrica total m3/s microcuenca Nivel III Quebrada Lajas

Mi	crocuer	ica Nive	el III		Cód	digo			Áre	a (Km2)		Es	tación	
Qu	ebrada	El Abur	rido		2319-0	1-01-04			32	,08713			Apto F	Paloneg	ro
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	0,111	0,010	0,062	0,121	0,023	0,030	0,095	0,037	0,044	0,117	0,061	0,023	0,733	0,061	0,121
1986	0,073	0,003	0,092	0,134	0,099	0,027	0,059	0,038	0,051	0,190	0,041	0,000	0,807	0,067	0,190
1987	0,011	0,017	0,189	0,228	0,132	0,056	0,121	0,042	0,045	0,097	0,070	0,000	1,009	0,084	0,228
1988	0,000	0,021	0,025	0,129	0,058	0,067	0,042	0,101	0,092	0,168	0,158	0,005	0,868	0,072	0,168
1989	0,000	0,000	0,214	0,100	0,096	0,035	0,050	0,016	0,099	0,046	0,022	0,038	0,716	0,060	0,214
1990	0,004	0,053	0,198	0,114	0,033	0,034	0,006	0,010	0,047	0,055	0,097	0,155	0,806	0,067	0,198
1991	0,000	0,006	0,116	0,079	0,085	0,022	0,040	0,042	0,098	0,096	0,091	0,000	0,676	0,056	0,116
1992	0,001	0,027	0,010	0,071	0,070	0,027	0,089	0,043	0,067	0,017	0,153	0,045	0,620	0,052	0,153
1993	0,003	0,011	0,056	0,173	0,071	0,030	0,066	0,057	0,071	0,094	0,110	0,000	0,742	0,062	0,173
1994	0,057	0,017	0,078	0,110	0,123	0,004	0,031	0,034	0,083	0,050	0,202	0,031	0,818	0,068	0,202
1995	0,000	0,046	0,190	0,113	0,049	0,069	0,032	0,157	0,030	0,124	0,029	0,029	0,868	0,072	0,190
1996	0,012	0,064	0,209	0,048	0,041	0,113	0,081	0,013	0,130	0,180	0,065	0,002	0,958	0,080	0,209
1998	0,014	0,225	0,038	0,061	0,119	0,028	0,057	0,030	0,049	0,110	0,077	0,020	0,827	0,069	0,225
1999	0,022	0,065	0,032	0,046	0,051	0,032	0,111	0,034	0,126	0,117	0,117	0,034	0,787	0,066	0,126
2000	0,221	0,195	0,038	0,022	0,083	0,097	0,020	0,018	0,113	0,061	0,079	0,013	0,961	0,080	0,221
2001	0,059	0,007	0,042	0,034	0,075	0,056	0,025	0,022	0,052	0,189	0,161	0,063	0,788	0,066	0,189
2002	0,002	0,000	0,051	0,151	0,072	0,060	0,012	0,008	0,027	0,073	0,033	0,0000	0,489	0,041	0,151
2003	0,002	0,170	0,236	0,072	0,020	0,062	0,077	0,027	0,114	0,128	0,180	0,074	1,162	0,097	0,236
2004	0,025	0,010	0,035	0,091	0,069	0,011	0,061	0,019	0,057	0,087	0,129	0,060	0,654	0,055	0,129
2005	0,072	0,242	0,026	0,117	0,076	0,017	0,031	0,017	0,131	0,232	0,128	0,076	1,165	0,097	0,242
2006	0,052	0,024	0,087	0,086	0,091	0,113	0,021	0,070	0,017	0,239	0,016	0,004	0,819	0,068	0,239
2007	0,024	0,022	0,120	0,054	0,138	0,019	0,016	0,083	0,057	0,115	0,029	0,009	0,685	0,057	0,138
2008	0,021	0,265	0,274	0,025	0,177	0,013	0,053	0,057	0,055	0,052	0,192	0,002	1,187	0,099	0,274

2011	0,004	0,059	0,051	0,147	0,157	0,065	0,041	0,096	0,066	0,375	0,068	0,086	1,216	0,101	0,375
2014	0,006	0,109	0,013	0,039	0,057	0,030	0,047	0,064	0,049	0,196	0,093	0,012	0,714	0,059	0,196

Tabla 55. Oferta hídrica total m3/s microcuenca Nivel III Quebrada Aburrido

Mi	crocuen	ıca Nive	el III		Cód	digo			Áre	a (Km2))		Es	tación	
Qı	uebrada	La Hor	nda		2319-0	1-01-05	j		50,	446437			Apto F	Paloneg	ro
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	0,174	0,016	0,097	0,190	0,036	0,048	0,149	0,059	0,069	0,184	0,096	0,036	1,153	0,096	0,190
1986	0,114	0,005	0,145	0,210	0,156	0,042	0,093	0,060	0,080	0,299	0,064	0,000	1,269	0,106	0,299
1987	0,017	0,027	0,298	0,359	0,207	0,087	0,191	0,066	0,071	0,153	0,110	0,000	1,586	0,132	0,359
1988	0,000	0,034	0,040	0,203	0,092	0,105	0,066	0,159	0,145	0,263	0,249	0,009	1,364	0,114	0,263
1989	0,000	0,000	0,337	0,157	0,151	0,055	0,078	0,025	0,156	0,072	0,035	0,060	1,126	0,094	0,337
1990	0,006	0,083	0,311	0,180	0,052	0,053	0,009	0,016	0,074	0,086	0,153	0,244	1,268	0,106	0,311
1991	0,001	0,009	0,183	0,125	0,133	0,035	0,063	0,066	0,154	0,151	0,143	0,000	1,063	0,089	0,183
1992	0,002	0,042	0,016	0,112	0,110	0,042	0,140	0,068	0,106	0,026	0,240	0,071	0,974	0,081	0,240
1993	0,004	0,017	0,088	0,272	0,111	0,047	0,104	0,090	0,112	0,148	0,174	0,000	1,167	0,097	0,272
1994	0,089	0,027	0,122	0,173	0,193	0,006	0,048	0,054	0,131	0,078	0,318	0,048	1,287	0,107	0,318
1995	0,000	0,072	0,299	0,178	0,077	0,109	0,051	0,247	0,047	0,194	0,045	0,045	1,365	0,114	0,299
1996	0,019	0,101	0,329	0,075	0,064	0,177	0,128	0,020	0,205	0,283	0,102	0,004	1,506	0,125	0,329
1998	0,022	0,353	0,060	0,097	0,187	0,044	0,089	0,047	0,077	0,173	0,120	0,031	1,299	0,108	0,353
1999	0,034	0,102	0,051	0,073	0,081	0,050	0,174	0,053	0,199	0,184	0,184	0,053	1,238	0,103	0,199
2000	0,348	0,307	0,059	0,035	0,131	0,152	0,032	0,028	0,178	0,096	0,124	0,020	1,511	0,126	0,348
2001	0,093	0,012	0,067	0,054	0,117	0,089	0,039	0,035	0,082	0,298	0,254	0,100	1,238	0,103	0,298
2002	0,004	0,001	0,079	0,238	0,114	0,094	0,018	0,012	0,043	0,115	0,052	0,000	0,769	0,064	0,238
2003	0,002	0,267	0,372	0,114	0,032	0,098	0,122	0,042	0,179	0,200	0,283	0,117	1,828	0,152	0,372
2004	0,039	0,015	0,055	0,143	0,109	0,018	0,096	0,029	0,089	0,137	0,202	0,095	1,028	0,086	0,202
2005	0,114	0,380	0,041	0,184	0,119	0,027	0,049	0,026	0,206	0,364	0,202	0,119	1,832	0,153	0,380
2006	0,082	0,038	0,136	0,135	0,144	0,177	0,033	0,110	0,026	0,375	0,026	0,006	1,288	0,107	0,375
2007	0,038	0,035	0,188	0,085	0,217	0,029	0,025	0,130	0,089	0,181	0,046	0,014	1,077	0,090	0,217
2008	0,033	0,417	0,432	0,039	0,278	0,020	0,083	0,090	0,087	0,082	0,301	0,003	1,866	0,156	0,432
2011	0,007	0,093	0,080	0,231	0,247	0,102	0,064	0,151	0,104	0,590	0,107	0,136	1,912	0,159	0,590
2014	0,010	0,171	0,020	0,061	0,089	0,047	0,074	0,100	0,078	0,308	0,146	0,018	1,122	0,093	0,308

Tabla 56. Oferta hídrica total m3/s microcuenca Nivel III Quebrada La Honda

Mic	crocuen	ica Nive	el III		Cóc	digo			Área ((Km2)			Esta	ción	
	Río de (Oro Baj	0		2319-0	1-02-01			91,73	31939			Apto Pa	lonegro	
Año	Ene	Feb	Mar	Abr May Jun Jul				Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	0,492	0,128	1,154	Abr May Jun Jul 1,980 0,188 0,283 0,592			0,731	0,962	1,195	0,380	0,101	8,184	0,682	1,980	
1986	0,323	0,035	0,897	0,886	0,945	0,135	0,631	0,947	0,580	2,354	0,306	0,001	8,040	0,670	2,354
1987	0,734	0,119	3,159	2,089	1,244	0,427	1,729	0,411	0,531	1,711	0,433	0,005	12,588	1,049	3,159

Mi	crocuen	ca Nive	el III		Cód	digo			Área	(Km2)			Esta	ción	
	Río de (Oro Baj	0		2319-0	1-02-01			91,73	31939			Apto Pa	lonegro	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1988	0,001	0,441	0,219	1,264	0,308	0,541	0,684	1,542	0,742	1,374	2,261	0,141	9,517	0,793	2,261
1989	0,000	0,000	1,960	0,548	0,803	0,413	0,496	0,271	0,888	1,164	0,164	0,235	6,943	0,579	1,960
1990	0,020	0,240	3,093	0,829	0,821	0,166	0,047	0,164	0,650	0,665	1,022	0,944	8,662	0,722	3,093
1991	0,002	0,035	1,038	0,979	0,577	0,177	0,490	0,776	1,201	0,798	0,816	0,001	6,890	0,574	1,201
1992	0,012	0,445	0,060	1,535	0,576	0,143	1,223	0,400	0,869	0,128	2,124	0,202	7,718	0,643	2,124
1993	0,012	0,097	0,704	1,432	0,819	0,427	0,377	0,399	0,915	0,603	1,352	0,001	7,137	0,595	1,432
1994	0,892	0,141	0,415	1,914	0,778	0,089	0,218	0,355	0,999	0,726	1,512	0,325	8,365	0,697	1,914
1995	0,025	0,215	1,780	0,999	0,638	0,554	1,004	1,777	0,328	1,810	0,202	0,230	9,561	0,797	1,810
1996	0,114	0,575	1,294	0,323	1,186	1,347	1,239	0,441	1,139	1,323	0,702	0,011	9,694	0,808	1,347
1998	0,793	1,821	0,838	0,401	0,737	0,187	0,830	0,163	0,801	2,211	0,442	0,149	9,372	0,781	2,211
1999	0,118	0,555	0,576	0,314	0,369	0,410	0,649	0,409	2,307	0,844	0,887	0,328	7,767	0,647	2,307
2000	1,720	1,577	0,458	0,123	1,520	0,624	0,141	0,157	1,380	1,122	0,724	0,073	9,621	0,802	1,720
2001	0,291	0,061	1,106	0,249	0,342	0,488	0,729	0,148	0,432	2,203	1,444	0,284	7,778	0,648	2,203
2002	0,010	0,025	1,555	1,047	1,587	0,764	0,238	0,064	0,214	0,598	0,431	0,035	6,569	0,547	1,587
2003	0,073	2,024	3,214	1,059	0,178	1,182	0,490	0,282	0,969	2,001	2,112	0,377	13,962	1,163	3,214
2004	0,116	0,897	0,690	1,733	2,163	0,126	0,419	0,090	0,684	1,454	1,075	0,358	9,806	0,817	2,163
2005	1,068	6,267	0,118	1,075	1,067	0,386	0,307	0,119	1,272	3,011	1,570	0,359	16,618	1,385	6,267
2006	0,274	0,418	1,265	0,483	1,195	1,631	0,301	0,842	0,300	2,437	0,207	0,023	9,376	0,781	2,437
2007	0,113	0,254	0,808	0,535	1,297	0,643	0,079	1,035	0,860	1,187	0,298	0,041	7,149	0,596	1,297
2008	0,095	2,511	2,884	0,518	1,114	0,089	0,577	0,538	0,976	0,639	2,053	0,008	12,001	1,000	2,884
2011	0,020	0,271	0,274	0,662	1,297	1,065	0,195	0,911	0,385	2,508	0,417	0,391	8,397	0,700	2,508
2014	0,072	0,595	0,175	0,289	0,342	0,144	0,248	1,554	0,691	3,141	1,894	0,052	9,196	0,766	3,141

Tabla 57. Oferta hídrica total m3/s microcuenca Nivel III Rio de Oro Bajo

Mic	crocuen	ica Nive	el III		Cód	digo			Área	(Km2)			Esta	ción	
R	Río de C	ro Med	io		2319-0	1-02-02	2		166,3	83875			Llano C	rande	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	0,175	0,076	0,735	1,237	0,099	0,155	0,274	0,468	0,625	0,675	0,175	0,036	4,732	0,394	1,237
1986	0,115	0,021	0,499	0,423	0,523	0,054	0,361	0,623	0,337	1,395	0,155	0,000	4,506	0,376	1,395
1987	0,514	0,058	1,980	1,140	0,686	0,218	1,054	0,229	0,310	1,081	0,199	0,003	7,473	0,623	1,980
1988	0,000	0,285	0,117	0,705	0,127	0,283	0,427	0,952	0,387	0,722	1,380	0,093	5,478	0,457	1,380
1989	0,000	0,000	1,070	0,233	0,425	0,243	0,278	0,171	0,481	0,769	0,083	0,108	3,861	0,322	1,070
1990	0,008	0,087	1,918	0,414	0,541	0,065	0,024	0,102	0,394	0,393	0,581	0,430	4,959	0,413	1,918
1991	0,001	0,016	0,562	0,580	0,280	0,092	0,290	0,494	0,710	0,421	0,442	0,000	3,887	0,324	0,710
1992	0,006	0,279	0,027	0,996	0,303	0,060	0,741	0,219	0,520	0,066	1,290	0,073	4,580	0,382	1,290
1993	0,005	0,052	0,418	0,755	0,478	0,260	0,165	0,196	0,546	0,283	0,799	0,000	3,958	0,330	0,799
1994	0,554	0,075	0,174	1,208	0,363	0,059	0,108	0,201	0,588	0,445	0,765	0,186	4,724	0,394	1,208
1995	0,018	0,081	0,979	0,539	0,383	0,289	0,675	1,031	0,189	1,109	0,099	0,120	5,510	0,459	1,109

Mic	crocuen	ca Nive	el III		Cód	digo			Área	(Km2)			Esta	ción	
R	lío de C	ro Med	io		2319-0	1-02-02			166,3	83875			Llano G	rande	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1996	0,063	0,312	0,596	0,156	0,793	0,792	0,766	0,299	0,613	0,664	0,403	0,004	5,460	0,455	0,793
1998	0,552	0,952	0,544	0,190	0,340	0,089	0,509	0,069	0,500	1,423	0,195	0,076	5,441	0,453	1,423
1999	0,050	0,296	0,365	0,152	0,183	0,245	0,289	0,241	1,466	0,420	0,452	0,182	4,342	0,362	1,466
2000	0,885	0,824	0,270	0,053	0,966	0,294	0,069	0,085	0,815	0,713	0,395	0,032	5,401	0,450	0,966
2001	0,114	0,032	0,732	0,125	0,126	0,262	0,488	0,071	0,228	1,287	0,783	0,102	4,349	0,362	1,287
2002	0,004	0,017	1,044	0,512	1,032	0,456	0,154	0,034	0,110	0,314	0,258	0,025	3,960	0,330	1,044
2003	0,051	1,190	1,943	0,649	0,096	0,755	0,228	0,161	0,517	1,242	1,236	0,152	8,218	0,685	1,943
2004	0,044	0,635	0,443	1,107	1,455	0,072	0,204	0,034	0,403	0,911	0,569	0,161	6,037	0,503	1,455
2005	0,656	4,148	0,042	0,588	0,649	0,251	0,171	0,059	0,708	1,803	0,928	0,136	10,139	0,845	4,148
2006	0,113	0,263	0,775	0,210	0,716	0,998	0,184	0,496	0,191	1,376	0,123	0,011	5,455	0,455	1,376
2007	0,042	0,148	0,390	0,299	0,715	0,435	0,031	0,615	0,531	0,672	0,168	0,016	4,061	0,338	0,715
2008	0,034	1,385	1,641	0,335	0,518	0,044	0,331	0,296	0,617	0,378	1,174	0,003	6,757	0,563	1,641
2011	0,007	0,100	0,115	0,239	0,683	0,667	0,075	0,503	0,171	1,204	0,191	0,142	4,096	0,341	1,204
2014	0,042	0,253	0,106	0,146	0,156	0,056	0,103	1,022	0,420	1,955	1,221	0,019	5,498	0,458	1,955

Tabla 58. Oferta hídrica total m3/s microcuenca Nivel III Rio de Oro Medio

Mi	crocuen	ica Nive	el III		Cód	digo			Área	(Km2)			Esta	ción	
	Río de	Oro Alto)		2319-0	1-02-03	3		145,4	44863			Llano (Grande	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	0,000	0,028	0,297	0,488	0,029	0,050	0,058	0,191	0,259	0,229	0,036	0,000	1,666	0,139	0,488
1986	0,000	0,007	0,165	0,098	0,170	0,005	0,125	0,262	0,120	0,510	0,042	0,000	1,505	0,125	0,510
1987	0,232	0,015	0,784	0,363	0,222	0,061	0,402	0,076	0,111	0,432	0,041	0,001	2,740	0,228	0,784
1988	0,000	0,117	0,036	0,234	0,016	0,082	0,168	0,369	0,112	0,213	0,527	0,040	1,914	0,160	0,527
1989	0,000	0,000	0,341	0,035	0,127	0,087	0,093	0,068	0,151	0,325	0,022	0,022	1,272	0,106	0,341
1990	0,001	0,001	0,748	0,109	0,228	0,006	0,007	0,040	0,149	0,143	0,199	0,086	1,717	0,143	0,748
1991	0,000	0,003	0,176	0,212	0,068	0,027	0,106	0,200	0,259	0,125	0,139	0,000	1,314	0,109	0,259
1992	0,002	0,111	0,005	0,412	0,090	0,008	0,279	0,070	0,193	0,018	0,489	0,001	1,679	0,140	0,489
1993	0,000	0,017	0,153	0,224	0,171	0,099	0,028	0,049	0,202	0,063	0,291	0,000	1,298	0,108	0,291
1994	0,216	0,022	0,024	0,482	0,079	0,025	0,028	0,069	0,213	0,171	0,208	0,064	1,599	0,133	0,482
1995	0,008	0,004	0,316	0,167	0,142	0,083	0,291	0,365	0,066	0,426	0,025	0,034	1,929	0,161	0,426
1996	0,020	0,098	0,123	0,038	0,340	0,286	0,297	0,130	0,190	0,176	0,140	0,000	1,839	0,153	0,340
1998	0,247	0,278	0,226	0,043	0,071	0,021	0,196	0,010	0,197	0,583	0,035	0,021	1,927	0,161	0,583
1999	0,007	0,090	0,146	0,037	0,047	0,091	0,053	0,087	0,590	0,110	0,125	0,060	1,444	0,120	0,590
2000	0,249	0,240	0,098	0,008	0,389	0,066	0,017	0,026	0,297	0,287	0,126	0,005	1,809	0,151	0,389
2001	0,009	0,009	0,310	0,033	0,004	0,081	0,209	0,017	0,068	0,460	0,246	0,001	1,447	0,121	0,460
2002	0,000	0,008	0,450	0,127	0,428	0,169	0,063	0,010	0,031	0,092	0,096	0,012	1,486	0,124	0,450
2003	0,022	0,430	0,731	0,249	0,030	0,306	0,049	0,055	0,157	0,485	0,444	0,016	2,974	0,248	0,731
2004	0,002	0,289	0,181	0,449	0,628	0,025	0,050	0,002	0,146	0,360	0,170	0,030	2,333	0,194	0,628

Mi	crocuen	ca Nive	el III		Cód	digo			Área	(Km2)			Esta	ción	
	Río de	Oro Alto	כ		2319-0	1-02-03	}		145,4	44863			Llano C	Grande	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
2005	0,252	1,756	0,000	0,188	0,247	0,105	0,057	0,015	0,233	0,670	0,338	0,007	3,868	0,322	1,756
2006	0,014	0,105	0,298	0,034 0,267 0,382 0,070			0,180	0,077	0,465	0,045	0,002	1,939	0,162	0,465	
2007	0,002	0,052	0,094	0,099	0,231	0,189	0,003	0,226	0,206	0,228	0,057	0,001	1,388	0,116	0,231
2008	0,000	0,450	0,563	0,138	0,111	0,011	0,115	0,096	0,247	0,138	0,406	0,000	2,275	0,190	0,563
2011	0,000	0,003	0,016	0,003	0,202	0,263	0,005	0,163	0,031	0,285	0,039	0,002	1,012	0,084	0,285
2014	0,015	0,038	0,040	0,039	0,031	0,004	0,013	0,430	0,160	0,767	0,501	0,000	2,037	0,170	0,767

Tabla 59. Oferta hídrica total m3/s microcuenca Nivel III Rio de Oro Alto

Micro	cuenca	Nivel II	I	Códig	0			Á	rea (Km	12)		E	stación		
Rio H	lato			2319-	01-02-0)4		5	0,80912	:6		A	pto Palo	negro	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	0,175	0,016	0,098	0,191	0,036	0,048	0,150	0,059	0,070	0,185	0,097	0,036	1,161	0,097	0,191
1986	0,115	0,005	0,146	0,212	0,157	0,043	0,094	0,061	0,081	0,301	0,065	0,000	1,279	0,107	0,301
1987	0,017	0,027	0,300	0,361	0,209	0,088	0,192	0,066	0,072	0,154	0,111	0,000	1,598	0,133	0,361
1988	0,000	0,034	0,040	0,204	0,093	0,106	0,067	0,160	0,146	0,265	0,251	0,009	1,374	0,114	0,265
1989	0,000	0,000	0,339	0,158	0,152	0,055	0,079	0,025	0,157	0,072	0,035	0,061	1,134	0,095	0,339
1990	0,006	0,084	0,313	0,181	0,053	0,053	0,010	0,016	0,074	0,086	0,154	0,246	1,277	0,106	0,313
1991	0,001	0,009	0,184	0,126	0,134	0,035	0,063	0,066	0,155	0,153	0,144	0,000	1,071	0,089	0,184
1992	0,002	0,042	0,016	0,113	0,111	0,043	0,141	0,068	0,107	0,026	0,242	0,071	0,981	0,082	0,242
1993	0,004	0,017	0,089	0,274	0,112	0,047	0,105	0,090	0,113	0,149	0,175	0,000	1,175	0,098	0,274
1994	0,090	0,027	0,123	0,174	0,194	0,006	0,049	0,054	0,132	0,078	0,320	0,048	1,296	0,108	0,320
1995	0,000	0,072	0,301	0,180	0,077	0,110	0,051	0,249	0,047	0,196	0,045	0,046	1,375	0,115	0,301
1996	0,019	0,102	0,331	0,075	0,064	0,179	0,128	0,020	0,206	0,285	0,102	0,004	1,516	0,126	0,331
1998	0,022	0,356	0,061	0,097	0,188	0,044	0,090	0,048	0,077	0,174	0,121	0,031	1,309	0,109	0,356
1999	0,035	0,103	0,051	0,073	0,081	0,050	0,175	0,054	0,200	0,185	0,185	0,054	1,247	0,104	0,200
2000	0,351	0,309	0,060	0,035	0,132	0,153	0,032	0,028	0,179	0,097	0,125	0,021	1,522	0,127	0,351
2001	0,094	0,012	0,067	0,054	0,118	0,089	0,039	0,035	0,083	0,300	0,255	0,100	1,247	0,104	0,300
2002	0,004	0,001	0,080	0,239	0,115	0,094	0,018	0,012	0,043	0,116	0,053	0,000	0,775	0,065	0,239
2003	0,002	0,269	0,374	0,114	0,032	0,099	0,123	0,042	0,180	0,202	0,285	0,118	1,841	0,153	0,374
2004	0,039	0,015	0,056	0,144	0,110	0,018	0,097	0,030	0,090	0,138	0,204	0,096	1,036	0,086	0,204
2005	0,115	0,382	0,042	0,186	0,120	0,027	0,050	0,026	0,207	0,367	0,203	0,120	1,845	0,154	0,382
2006	0,083	0,038	0,137	0,136	0,145	0,178	0,033	0,111	0,026	0,378	0,026	0,006	1,298	0,108	0,378
2007	0,038	0,035	0,189	0,086	0,218	0,030	0,025	0,131	0,090	0,183	0,046	0,014	1,085	0,090	0,218
2008	0,034	0,420	0,435	0,039	0,280	0,021	0,084	0,091	0,088	0,083	0,304	0,003	1,880	0,157	0,435
2011	0,007	0,094	0,081	0,233	0,249	0,102	0,065	0,152	0,105	0,594	0,107	0,137	1,926	0,160	0,594
2014	0,010	0,172	0,020	0,062	0,090	0,047	0,074	0,101	0,078	0,311	0,147	0,018	1,130	0,094	0,311

Tabla 60. Oferta hídrica total m3/s microcuenca Nivel III Rio Hato

Mic	crocuen	ica Nive	el III		Cód	digo			Área	(Km2)			Esta	ción	
	Rio	Frio			2319-0	1-02-05	5		118,3	38057			Llano (Grande	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	0,000	0,023	0,242	0,397	0,024	0,041	0,047	0,155	0,211	0,186	0,030	0,000	1,356	0,113	0,397
1986	0,000	0,006	0,134	0,080	0,139	0,004	0,101	0,214	0,097	0,415	0,034	0,000	1,225	0,102	0,415
1987	0,189	0,012	0,638	0,296	0,181	0,049	0,327	0,062	0,090	0,352	0,033	0,001	2,230	0,186	0,638
1988	0,000	0,095	0,029	0,190	0,013	0,067	0,137	0,301	0,091	0,173	0,429	0,032	1,558	0,130	0,429
1989	0,000	0,000	0,277	0,029	0,104	0,071	0,076	0,056	0,123	0,264	0,018	0,018	1,035	0,086	0,277
1990	0,001	0,001	0,609	0,089	0,185	0,005	0,006	0,032	0,122	0,116	0,162	0,070	1,398	0,116	0,609
1991	0,000	0,002	0,143	0,172	0,055	0,022	0,086	0,162	0,211	0,102	0,113	0,000	1,069	0,089	0,211
1992	0,002	0,090	0,004	0,335	0,073	0,006	0,227	0,057	0,157	0,015	0,398	0,001	1,366	0,114	0,398
1993	0,000	0,013	0,125	0,183	0,139	0,081	0,023	0,040	0,165	0,051	0,237	0,000	1,056	0,088	0,237
1994	0,176	0,018	0,019	0,393	0,064	0,020	0,023	0,056	0,173	0,139	0,169	0,052	1,302	0,108	0,393
1995	0,007	0,004	0,257	0,136	0,116	0,068	0,237	0,297	0,054	0,347	0,020	0,028	1,570	0,131	0,347
1996	0,017	0,080	0,100	0,031	0,277	0,233	0,242	0,106	0,154	0,144	0,114	0,000	1,497	0,125	0,277
1998	0,201	0,226	0,184	0,035	0,058	0,017	0,159	0,008	0,161	0,474	0,028	0,017	1,569	0,131	0,474
1999	0,006	0,073	0,119	0,030	0,039	0,074	0,043	0,071	0,480	0,089	0,101	0,049	1,175	0,098	0,480
2000	0,203	0,196	0,080	0,007	0,317	0,054	0,014	0,021	0,241	0,234	0,103	0,004	1,473	0,123	0,317
2001	0,008	0,008	0,252	0,027	0,003	0,066	0,171	0,014	0,055	0,375	0,200	0,001	1,177	0,098	0,375
2002	0,000	0,006	0,366	0,104	0,348	0,138	0,051	0,008	0,025	0,075	0,078	0,009	1,209	0,101	0,366
2003	0,018	0,350	0,595	0,203	0,024	0,249	0,040	0,045	0,128	0,395	0,361	0,013	2,421	0,202	0,595
2004	0,002	0,235	0,147	0,365	0,511	0,021	0,041	0,002	0,119	0,293	0,139	0,025	1,899	0,158	0,511
2005	0,205	1,429	0,000	0,153	0,201	0,085	0,046	0,012	0,190	0,545	0,275	0,006	3,149	0,262	1,429
2006	0,011	0,085	0,242	0,028	0,217	0,311	0,057	0,146	0,062	0,379	0,037	0,002	1,578	0,132	0,379
2007	0,002	0,043	0,076	0,081	0,188	0,154	0,002	0,184	0,168	0,186	0,046	0,001	1,130	0,094	0,188
2008	0,000	0,366	0,458	0,112	0,091	0,009	0,094	0,078	0,201	0,112	0,331	0,000	1,851	0,154	0,458
2011	0,000	0,002	0,013	0,002	0,165	0,214	0,004	0,133	0,025	0,232	0,032	0,002	0,824	0,069	0,232
2014	0,012	0,031	0,032	0,032	0,025	0,004	0,011	0,350	0,130	0,624	0,408	0,000	1,658	0,138	0,624

Tabla 61. Oferta hídrica total m3/s microcuenca Nivel III Rio Frio

Mi	crocuen	ica Nive	el III		Cód	digo			Área	(Km2)			Esta	ıción	
	Rio	Tona			2319-0	1-03-01			194,7	85833			Ве	rlín	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Tota I	med	max
1985	0,040	0,013	0,094	0,196	0,513	0,203	0,244	0,214	0,245	0,601	0,149	0,129	2,641	0,220	0,601
1986	0,023	0,153	0,021	1,001	0,678	0,542	0,278	0,358	0,461	0,590	0,253	0,050	4,407	0,367	1,001
1987	0,017	0,004	0,063	0,142	0,839	0,029	0,240	0,125	0,509	1,262	0,112	0,016	3,360	0,280	1,262
1988	0,005	0,204	0,134	0,380	0,366	0,318	0,324	0,757	0,680	0,332	0,557	0,180	4,237	0,353	0,757
1989	0,007	0,030	0,272	0,016	0,553	0,203	0,158	0,070	0,717	0,408	0,050	0,113	2,596	0,216	0,717
1990	0,028	0,030	0,471	0,465	0,320	0,335	0,305	0,488	0,315	0,597	0,140	0,117	3,612	0,301	0,597
1991	0,028	0,003	0,454	0,270	0,346	0,124	0,339	0,272	0,355	0,268	0,286	0,017	2,761	0,230	0,454
1992	0,001	0,000	0,000	0,207	0,313	0,123	0,441	0,422	0,180	0,137	0,181	0,041	2,044	0,170	0,441

Mi	crocuer	ica Nive	el III		Cód	digo			Área	(Km2)			Esta	ación	
	Rio	Tona			2319-0	1-03-01			194,7	85833			Ве	rlín	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Tota I	med	max
1993	0,080	0,003	0,092	0,299	1,093	0,230	0,168	0,066	0,634	0,286	0,333	0,007	3,292	0,274	1,093
1994	0,010	0,142	0,037	0,424	0,452	0,132	0,188	0,163	0,427	0,328	0,412	0,004	2,719	0,227	0,452
1995	0,007	0,045	0,082	0,476	0,330	0,258	0,173	1,180	0,842	1,018	0,021	0,008	4,439	0,370	1,180
1996	0,001	0,162	0,312	0,117	0,176	0,505	0,315	0,329	0,287	0,614	0,131	0,001	2,951	0,246	0,614
1998	0,012	0,000	0,119	0,763	0,553	0,512	0,129	0,280	0,553	0,591	0,293	0,188	3,994	0,333	0,763
1999	0,011	0,126	0,021	0,609	0,060	0,320	0,205	0,460	0,586	0,509	0,642	0,018	3,565	0,297	0,642
2000	0,057	0,245	0,025	0,120	0,119	0,185	0,203	0,103	0,646	0,416	0,378	0,012	2,510	0,209	0,646
2001	0,000	0,089	0,208	0,003	0,313	0,223	0,153	0,206	0,395	0,412	0,026	0,063	2,090	0,174	0,412
2002	0,012	0,001	0,080	0,363	0,371	0,520	0,163	0,076	0,394	0,175	0,000	0,013	2,168	0,181	0,520
2003	0,000	0,001	0,124	0,451	0,144	0,333	0,333	0,190	0,401	0,678	0,192	0,067	2,915	0,243	0,678
2004	0,031	0,000	0,051	0,461	0,566	0,250	0,139	0,197	0,882	0,557	0,259	0,009	3,404	0,284	0,882
2005	0,045	0,053	0,000	0,133	0,750	0,583	0,137	0,162	0,291	0,807	0,622	0,003	3,584	0,299	0,807
2006	0,028	0,046	0,252	0,673	1,032	0,211	0,345	0,459	0,202	0,504	0,068	0,001	3,821	0,318	1,032
2007	0,010	0,006	0,271	0,125	0,201	0,305	0,171	0,854	0,528	0,744	0,127	0,009	3,350	0,279	0,854
2008	0,038	0,003	0,035	0,552	0,471	0,209	0,433	0,506	0,507	0,486	0,460	0,000	3,701	0,308	0,552
2011	0,015	0,190	0,480	1,048	0,965	0,593	0,165	0,591	0,454	0,467	0,503	0,093	5,564	0,464	1,048
2014	0,014	0,080	0,043	0,139	0,190	0,384	0,191	0,110	0,205	0,820	0,230	0,010	2,417	0,201	0,820

Tabla 62. Oferta hídrica total m3/s microcuenca Nivel III Rio Tona

Mic	crocuen	ica Nive	el III		Cód	digo			Área	(Km2)			Esta	ción	
	Rio C	Charta			2319-0	1-03-02			76,6	0431			Vivero	Surata	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	0,002	0,049	0,124	0,121	0,335	0,088	0,111	0,131	0,270	0,377	0,181	0,267	2,056	0,171	0,377
1986	0,020	0,089	0,091	0,640	0,277	0,037	0,002	0,035	0,375	0,519	0,181	0,011	2,276	0,190	0,640
1987	0,011	0,000	0,052	0,107	0,260	0,163	0,018	0,038	0,249	0,665	0,294	0,073	1,929	0,161	0,665
1988	0,004	0,125	0,031	0,230	0,126	0,158	0,042	0,501	0,295	0,577	0,626	0,047	2,762	0,230	0,626
1989	0,076	0,042	0,314	0,103	0,173	0,056	0,016	0,154	0,277	0,332	0,043	0,075	1,659	0,138	0,332
1990	0,025	0,164	0,247	0,675	0,120	0,194	0,010	0,119	0,084	0,514	0,271	0,139	2,561	0,213	0,675
1991	0,003	0,000	0,217	0,332	0,369	0,076	0,001	0,002	0,191	0,192	0,405	0,016	1,804	0,150	0,405
1992	0,026	0,033	0,016	0,155	0,596	0,144	0,017	0,041	0,067	0,132	0,254	0,096	1,576	0,131	0,596
1993	0,031	0,001	0,132	0,471	0,517	0,037	0,006	0,022	0,226	0,207	0,500	0,041	2,192	0,183	0,517
1994	0,010	0,025	0,122	0,513	0,112	0,010	0,006	0,038	0,266	0,304	0,486	0,008	1,902	0,158	0,513
1995	0,000	0,048	0,165	0,238	0,250	0,212	0,047	0,347	0,277	0,479	0,033	0,014	2,112	0,176	0,479
1996	0,010	0,156	0,280	0,085	0,174	0,147	0,238	0,173	0,245	0,380	0,213	0,042	2,142	0,179	0,380
1998	0,009	0,039	0,034	0,333	0,379	0,074	0,081	0,159	0,310	0,485	0,254	0,274	2,430	0,202	0,485
1999	0,025	0,178	0,062	0,387	0,251	0,282	0,061	0,230	0,269	0,381	0,444	0,045	2,614	0,218	0,444
2000	0,055	0,153	0,034	0,242	0,084	0,055	0,062	0,000	0,371	0,181	0,217	0,005	1,460	0,122	0,371
2001	0,021	0,006	0,222	0,075	0,156	0,004	0,016	0,000	0,264	0,387	0,176	0,058	1,385	0,115	0,387
2002	0,001	0,001	0,328	0,415	0,418	0,161	0,034	0,000	0,238	0,335	0,054	0,120	2,106	0,175	0,418
2003	0,000	0,029	0,107	0,516	0,030	0,106	0,039	0,123	0,461	0,652	0,227	0,160	2,452	0,204	0,652

Mi	crocuen	ica Nive	el III		Cód	digo			Área	(Km2)			Esta	ción	
	Rio C	Charta			2319-0	1-03-02			76,6	0431			Vivero	Surata	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
2004	0,057	0,015	0,043	0,356	0,335	0,055	0,002	0,027	0,302	0,279	0,288	0,036	1,795	0,150	0,356
2005	0,119	0,026	0,002	0,167				0,092	0,227	0,505	0,393	0,001	2,445	0,204	0,534
2006	0,033	0,000	0,340	0,546	·			0,062	0,113	0,328	0,365	0,081	2,196	0,183	0,546
2007	0,007	0,000	0,122	0,084	0,111	0,027	0,076	0,368	0,180	0,680	0,056	0,003	1,714	0,143	0,680
2008	0,004	0,069	0,034	0,152	0,489	0,081	0,024	0,304	0,327	0,342	0,626	0,002	2,455	0,205	0,626
2011	0,029	0,122	0,441	0,759	0,584	0,088	0,044	0,122	0,157	0,390	0,541	0,294	3,573	0,298	0,759
2014	0,001	0,121	0,047	0,367	0,161	0,000	0,000	0,059	0,121	0,606	0,208	0,017	1,708	0,142	0,606

Tabla 63. Oferta hídrica total m3/s microcuenca Nivel III Rio Charta

Mic	crocuen	ica Nive	el III		Cód	digo			Área	(Km2)			Esta	ción	
	Rio \	Vetas			2319-0	1-03-03	}		157,0	3761			Vivero	Surata	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	0,005	0,100	0,254	0,248	0,687	0,180	0,227	0,269	0,553	0,772	0,372	0,547	4,215	0,351	0,772
1986	0,042	0,183	0,186	1,312	0,567	0,076	0,003	0,071	0,769	1,063	0,370	0,024	4,666	0,389	1,312
1987	0,022	0,000	0,107	0,219	0,533	0,334	0,036	0,077	0,511	1,363	0,602	0,149	3,953	0,329	1,363
1988	0,008	0,255	0,064	0,472	0,258	0,324	0,085	1,026	0,605	1,182	1,284	0,096	5,662	0,472	1,284
1989	0,156	0,086	0,643	0,211	0,355	0,115	0,032	0,316	0,567	0,680	0,087	0,153	3,402	0,283	0,680
1990	0,050	0,336	0,506	1,384	0,247	0,398	0,020	0,243	0,172	1,054	0,555	0,286	5,251	0,438	1,384
1991	0,007	0,000	0,445	0,680	0,756	0,156	0,002	0,005	0,392	0,394	0,830	0,033	3,699	0,308	0,830
1992	0,054	0,067	0,032	0,317	1,221	0,294	0,034	0,084	0,137	0,271	0,521	0,197	3,231	0,269	1,221
1993	0,064	0,002	0,271	0,966	1,060	0,076	0,013	0,045	0,463	0,425	1,026	0,085	4,494	0,375	1,060
1994	0,020	0,052	0,251	1,052	0,230	0,021	0,012	0,078	0,545	0,623	0,997	0,017	3,898	0,325	1,052
1995	0,001	0,098	0,339	0,487	0,512	0,435	0,096	0,711	0,569	0,983	0,068	0,029	4,329	0,361	0,983
1996	0,021	0,320	0,573	0,174	0,356	0,301	0,487	0,354	0,502	0,780	0,437	0,086	4,391	0,366	0,780
1998	0,018	0,080	0,069	0,682	0,778	0,152	0,167	0,325	0,635	0,994	0,520	0,561	4,980	0,415	0,994
1999	0,050	0,365	0,128	0,793	0,514	0,579	0,125	0,472	0,552	0,782	0,910	0,092	5,359	0,447	0,910
2000	0,113	0,313	0,070	0,496	0,172	0,112	0,127	0,000	0,761	0,372	0,444	0,011	2,992	0,249	0,761
2001	0,043	0,012	0,454	0,154	0,320	0,008	0,033	0,000	0,541	0,794	0,361	0,119	2,840	0,237	0,794
2002	0,003	0,002	0,673	0,851	0,857	0,331	0,069	0,001	0,488	0,686	0,110	0,247	4,317	0,360	0,857
2003	0,000	0,060	0,220	1,058	0,061	0,218	0,081	0,252	0,945	1,336	0,466	0,327	5,026	0,419	1,336
2004	0,116	0,031	0,087	0,731	0,688	0,113	0,005	0,055	0,619	0,572	0,591	0,073	3,680	0,307	0,731
2005	0,244	0,052	0,005	0,342	1,095	0,551	0,228	0,188	0,465	1,035	0,806	0,001	5,012	0,418	1,095
2006	0,067	0,000	0,698	1,120	0,280	0,344	0,045	0,128	0,231	0,673	0,749	0,166	4,501	0,375	1,120
2007	0,013	0,000	0,250	0,172	0,228	0,054	0,155	0,755	0,369	1,393	0,115	0,007	3,513	0,293	1,393
2008	0,008	0,141	0,070	0,312	1,002	0,166	0,050	0,624	0,670	0,700	1,284	0,005	5,033	0,419	1,284
2011	0,060	0,250	0,905	1,555	1,198	0,181	0,091	0,251	0,321	0,800	1,110	0,603	7,324	0,610	1,555
2014	0,002	0,248	0,097	0,752	0,331	0,000	0,000	0,120	0,248	1,241	0,427	0,035	3,502	0,292	1,241

Tabla 64. Oferta hídrica total m3/s microcuenca Nivel III Rio Vetas

Mi	crocuen	ca Nive	el III		Cód	digo			Área	(Km2)			Esta	ción	
	Río Su	ata Alto)		2319-0	1-03-04			137,4	96622			Vivero	Surata	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	0,009	0,188	0,476	0,465	1,288	0,338	0,427	0,505	1,038	1,449	0,698	1,027	7,906	0,659	1,449
1986	0,078	0,343	0,348	2,461	1,064	0,143	0,006	0,133	1,443	1,994	0,694	0,044	8,752	0,729	2,461
1987	0,041	0,000	0,201	0,411	0,999	0,626	0,068	0,144	0,958	2,556	1,130	0,280	7,415	0,618	2,556
1988	0,016	0,479	0,120	0,886	0,484	0,608	0,160	1,924	1,136	2,217	2,408	0,181	10,619	0,885	2,408
1989	0,292	0,161	1,206	0,397	0,666	0,215	0,060	0,594	1,064	1,275	0,164	0,287	6,380	0,532	1,275
1990	0,094	0,630	0,948	2,595	0,463	0,747	0,038	0,456	0,323	1,976	1,041	0,536	9,848	0,821	2,595
1991	0,013	0,000	0,835	1,275	1,417	0,292	0,003	0,009	0,735	0,740	1,556	0,062	6,938	0,578	1,556
1992	0,101	0,127	0,061	0,595	2,291	0,552	0,065	0,157	0,257	0,508	0,977	0,370	6,060	0,505	2,291
1993	0,120	0,003	0,508	1,811	1,989	0,142	0,024	0,085	0,869	0,797	1,924	0,159	8,429	0,702	1,989
1994	0,038	0,098	0,471	1,974	0,432	0,039	0,022	0,146	1,022	1,168	1,870	0,032	7,311	0,609	1,974
1995	0,002	0,184	0,635	0,914	0,961	0,817	0,180	1,334	1,067	1,843	0,128	0,054	8,119	0,677	1,843
1996	0,040	0,600	1,075	0,326	0,667	0,565	0,914	0,665	0,941	1,463	0,819	0,161	8,236	0,686	1,463
1998	0,033	0,149	0,130	1,279	1,458	0,285	0,313	0,610	1,192	1,865	0,976	1,052	9,341	0,778	1,865
1999	0,094	0,685	0,240	1,486	0,963	1,085	0,234	0,884	1,035	1,466	1,706	0,172	10,052	0,838	1,706
2000	0,212	0,588	0,132	0,930	0,323	0,210	0,238	0,000	1,427	0,698	0,833	0,020	5,612	0,468	1,427
2001	0,081	0,023	0,852	0,289	0,600	0,015	0,061	0,000	1,014	1,490	0,676	0,224	5,326	0,444	1,490
2002	0,006	0,003	1,263	1,595	1,608	0,620	0,129	0,001	0,915	1,287	0,206	0,463	8,097	0,675	1,608
2003	0,001	0,113	0,413	1,985	0,114	0,408	0,151	0,473	1,773	2,506	0,874	0,614	9,426	0,785	2,506
2004	0,217	0,058	0,164	1,370	1,290	0,212	0,009	0,103	1,161	1,072	1,108	0,138	6,902	0,575	1,370
2005	0,458	0,098	0,009	0,641	2,053	1,033	0,428	0,354	0,872	1,941	1,512	0,003	9,400	0,783	2,053
2006	0,126	0,000	1,309	2,100	0,525	0,646	0,084	0,240	0,434	1,263	1,404	0,312	8,442	0,703	2,100
2007	0,025	0,000	0,468	0,323	0,428	0,102	0,291	1,416	0,692	2,613	0,216	0,013	6,590	0,549	2,613
2008	0,016	0,265	0,132	0,585	1,880	0,312	0,094	1,170	1,256	1,313	2,408	0,009	9,440	0,787	2,408
2011	0,112	0,470	1,696	2,917	2,247	0,339	0,170	0,470	0,602	1,501	2,081	1,130	13,736	1,145	2,917
2014	0,003	0,465	0,182	1,411	0,620	0,000	0,001	0,225	0,466	2,328	0,802	0,066	6,569	0,547	2,328

Tabla 65. Oferta hídrica total m3/s microcuenca Nivel III Rio Suratá Alto

Mi	crocuen	ica Nive	el III		Cód	digo			Área	(Km2)			Esta	ción	
	Rio Sur	ata Baj	0		2319-0	1-03-05			125,3	38504			Apto Pa	lonegro	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	0,483	0,290	0,936	1,255	2,224	0,747	1,151	0,996	1,725	2,883	1,268	1,511	15,467	1,289	2,883
1986	0,405	0,596	0,820	4,624	2,406	0,827	0,516	0,677	2,478	3,845	1,288	0,106	18,589	1,549	4,624
1987	0,112	0,071	1,056	1,552	2,614	1,035	0,800	0,470	1,893	4,862	1,810	0,370	16,645	1,387	4,862
1988	0,025	0,892	0,385	1,999	1,204	1,344	0,691	3,577	2,471	3,779	4,210	0,429	21,006	1,751	4,210
1989	0,375	0,232	2,629	0,906	1,766	0,611	0,429	0,879	2,446	2,194	0,343	0,624	13,433	1,119	2,629
1990	0,162	1,031	2,439	4,181	1,033	1,408	0,376	1,104	0,905	3,301	1,832	1,399	19,172	1,598	4,181
1991	0,046	0,026	1,962	2,186	2,464	0,578	0,499	0,446	1,663	1,576	2,603	0,095	14,145	1,179	2,603
1992	0,133	0,263	0,116	1,234	3,473	0,923	0,871	0,788	0,767	0,841	2,008	0,682	12,100	1,008	3,473
1993	0,242	0,049	0,952	3,256	3,875	0,526	0,457	0,396	2,008	1,656	3,189	0,208	16,814	1,401	3,875

Mi	crocuen	ica Nive	el III		Código 2319-01-03-05				Área	(Km2)			Esta	ción	
	Rio Sur	ata Baj	0		2319-01-03-05				125,3	38504			Apto Pa	lonegro	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1994	0,279	0,332	0,934	3,340	1,476	0,195	0,336	0,481	2,040	1,994	3,559	0,164	15,128	1,261	3,559
1995	0,010	0,455	1,626	2,070	1,730	1,557	0,527	3,474	2,303	3,823	0,295	0,189	18,060	1,505	3,823
1996	0,099	1,169	2,483	0,714	1,175	1,658	1,783	1,216	1,982	3,162	1,416	0,212	17,070	1,422	3,162
1998	0,108	1,066	0,432	2,615	2,854	0,981	0,745	1,166	2,245	3,370	1,822	1,591	18,993	1,583	3,370
1999	0,215	1,242	0,450	2,663	1,475	1,811	0,931	1,707	2,384	2,814	3,248	0,366	19,307	1,609	3,248
2000	1,190	1,748	0,339	1,379	0,851	0,828	0,582	0,173	2,887	1,535	1,737	0,089	13,336	1,111	2,887
2001	0,334	0,147	1,447	0,500	1,360	0,462	0,326	0,293	1,878	3,030	1,509	0,593	11,878	0,990	3,030
2002	0,028	0,007	1,869	2,964	2,679	1,534	0,372	0,107	1,653	2,083	0,390	0,597	14,281	1,190	2,964
2003	0,007	0,807	1,569	3,235	0,367	1,090	0,826	0,890	3,079	4,334	1,997	1,131	19,333	1,611	4,334
2004	0,402	0,111	0,395	2,544	2,462	0,562	0,388	0,400	2,566	2,250	2,158	0,418	14,656	1,221	2,566
2005	0,904	1,120	0,114	1,398	3,633	1,950	0,799	0,672	1,900	4,158	3,029	0,302	19,980	1,665	4,158
2006	0,392	0,140	2,239	3,655	2,051	1,465	0,532	1,034	0,813	3,027	1,901	0,409	17,659	1,472	3,655
2007	0,136	0,094	1,327	0,744	1,279	0,506	0,600	2,962	1,621	4,487	0,514	0,060	14,330	1,194	4,487
2008	0,140	1,374	1,274	1,386	3,530	0,653	0,758	2,205	2,306	2,345	4,243	0,019	20,233	1,686	4,243
2011	0,173	1,013	2,818	5,299	4,410	1,272	0,538	1,559	1,472	3,823	3,391	1,855	27,624	2,302	5,299
2014	0,042	1,091	0,322	2,068	1,193	0,499	0,376	0,643	0,985	4,521	1,603	0,139	13,482	1,124	4,521

Tabla 66. Oferta hídrica total m3/s microcuenca Nivel III Rio Surata Bajo

Mic	crocuen	ica Nive	el III		Cód	digo			Área	(Km2)			Esta	ción	
	Río Ne	gro Bajo)		2319-0	1-04-01			47,98	39433			Vivero	Surata	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	0,007	0,161	0,407	0,398	1,101	0,289	0,365	0,432	0,887	1,238	0,596	0,878	6,758	0,563	1,238
1986	0,067	0,293	0,298	2,104	0,909	0,122	0,005	0,114	1,233	1,705	0,594	0,038	7,481	0,623	2,104
1987	0,035	0,000	0,172	0,351	0,854	0,535	0,058	0,123	0,819	2,185	0,966	0,239	6,339	0,528	2,185
1988	0,013	0,410	0,102	0,757	0,414	0,519	0,137	1,645	0,971	1,895	2,059	0,155	9,077	0,756	2,059
1989	0,250	0,137	1,031	0,339	0,569	0,184	0,052	0,507	0,910	1,090	0,140	0,245	5,454	0,454	1,090
1990	0,081	0,538	0,810	2,219	0,396	0,639	0,032	0,390	0,276	1,690	0,890	0,458	8,419	0,702	2,219
1991	0,011	0,000	0,714	1,090	1,212	0,250	0,003	0,008	0,628	0,632	1,330	0,053	5,931	0,494	1,330
1992	0,086	0,108	0,052	0,509	1,958	0,472	0,055	0,134	0,220	0,434	0,836	0,316	5,180	0,432	1,958
1993	0,103	0,002	0,434	1,548	1,700	0,122	0,020	0,072	0,743	0,681	1,645	0,136	7,206	0,600	1,700
1994	0,032	0,083	0,402	1,687	0,369	0,033	0,019	0,125	0,874	0,999	1,599	0,028	6,250	0,521	1,687
1995	0,001	0,158	0,543	0,781	0,821	0,698	0,154	1,140	0,912	1,575	0,110	0,046	6,940	0,578	1,575
1996	0,034	0,513	0,919	0,279	0,570	0,483	0,781	0,568	0,805	1,250	0,700	0,137	7,041	0,587	1,250
1998	0,028	0,128	0,111	1,093	1,247	0,243	0,268	0,522	1,019	1,594	0,834	0,899	7,985	0,665	1,594
1999	0,081	0,585	0,205	1,271	0,824	0,928	0,200	0,756	0,885	1,253	1,458	0,147	8,593	0,716	1,458
2000	0,181	0,502	0,113	0,795	0,276	0,180	0,204	0,000	1,220	0,597	0,712	0,017	4,797	0,400	1,220
2001	0,069	0,020	0,729	0,247	0,513	0,013	0,052	0,000	0,867	1,274	0,578	0,192	4,553	0,379	1,274
2002	0,005	0,003	1,079	1,364	1,374	0,530	0,111	0,001	0,782	1,100	0,177	0,396	6,921	0,577	1,374
2003	0,001	0,097	0,353	1,697	0,097	0,349	0,129	0,405	1,516	2,143	0,747	0,525	8,058	0,671	2,143
2004	0,186	0,050	0,140	1,172	1,103	0,181	0,007	0,088	0,993	0,916	0,947	0,118	5,900	0,492	1,172
2005	0,391	0,084	0,007	0,548	1,755	0,883	0,366	0,302	0,745	1,659	1,293	0,002	8,036	0,670	1,755
2006	0,108	0,000	1,119	1,795	0,449	0,552	0,071	0,205	0,371	1,079	1,200	0,266	7,216	0,601	1,795
2007	0,022	0,000	0,400	0,276	0,366	0,087	0,249	1,211	0,592	2,234	0,185	0,011	5,633	0,469	2,234
2008	0,013	0,227	0,113	0,500	1,607	0,266	0,080	1,000	1,074	1,123	2,058	0,008	8,070	0,672	2,058

Mic	crocuen	ca Nive	el III		Cód	digo			Área	(Km2)			Esta	ción		
	Río Ne	gro Bajo)		2319-01-04-01				47,98	39433		Vivero Surata				
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max	
2011	0,096	0,402	1,450	2,494	1,921	0,290	0,145	0,402	0,515	1,283	1,779	0,966	11,742	0,979	2,494	
2014	0,003	0,398	0,155	1,206	0,530	0,000	0,001	0,193	0,398	1,990	0,685	0,057	5,615	0,468	1,990	

Tabla 67. Oferta hídrica total m3/s microcuenca Nivel III Rio Negro

Mid	crocuen	ica Nive	el III		Código 2319-01-04-02				Área	(Km2)		Estación				
Qu	ebrada	Santac	ruz		2319-0	1-04-02	2		171	,094			Vivero	Surata		
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max	
1985	0,005	0,109	0,277	0,270	0,748	0,196	0,248	0,293	0,603	0,841	0,405	0,596	4,593	0,383	0,841	
1986	0,045	0,199	0,202	1,430	0,618	0,083	0,003	0,078	0,838	1,158	0,403	0,026	5,084	0,424	1,430	
1987	0,024	0,000	0,117	0,239	0,580	0,364	0,040	0,084	0,556	1,485	0,656	0,163	4,307	0,359	1,485	
1988	0,009	0,278	0,070	0,515	0,281	0,353	0,093	1,118	0,660	1,288	1,399	0,105	6,168	0,514	1,399	
1989	0,170	0,093	0,700	0,230	0,387	0,125	0,035	0,345	0,618	0,741	0,095	0,167	3,706	0,309	0,741	
1990	0,055	0,366	0,551	1,508	0,269	0,434	0,022	0,265	0,188	1,148	0,605	0,311	5,721	0,477	1,508	
1991	0,007	0,000	0,485	0,741	0,823	0,170	0,002	0,005	0,427	0,430	0,904	0,036	4,030	0,336	0,904	
1992	0,059	0,074	0,035	0,346	1,331	0,321	0,038	0,091	0,149	0,295	0,568	0,215	3,520	0,293	1,331	
1993	0,070	0,002	0,295	1,052	1,155	0,083	0,014	0,049	0,505	0,463	1,118	0,092	4,897	0,408	1,155	
1994	0,022	0,057	0,273	1,146	0,251	0,023	0,013	0,085	0,594	0,679	1,086	0,019	4,247	0,354	1,146	
1995	0,001	0,107	0,369	0,531	0,558	0,474	0,105	0,775	0,620	1,071	0,075	0,031	4,716	0,393	1,071	
1996	0,023	0,348	0,625	0,190	0,388	0,328	0,531	0,386	0,547	0,850	0,476	0,093	4,784	0,399	0,850	
1998	0,019	0,087	0,075	0,743	0,847	0,165	0,182	0,355	0,692	1,083	0,567	0,611	5,426	0,452	1,083	
1999	0,055	0,398	0,140	0,863	0,560	0,630	0,136	0,514	0,601	0,852	0,991	0,100	5,839	0,487	0,991	
2000	0,123	0,341	0,077	0,540	0,188	0,122	0,138	0,000	0,829	0,405	0,484	0,012	3,260	0,272	0,829	
2001	0,047	0,013	0,495	0,168	0,349	0,009	0,036	0,000	0,589	0,865	0,393	0,130	3,094	0,258	0,865	
2002	0,003	0,002	0,733	0,927	0,934	0,360	0,075	0,001	0,531	0,748	0,120	0,269	4,703	0,392	0,934	
2003	0,000	0,066	0,240	1,153	0,066	0,237	0,088	0,275	1,030	1,456	0,508	0,357	5,475	0,456	1,456	
2004	0,126	0,034	0,095	0,796	0,749	0,123	0,005	0,060	0,674	0,623	0,644	0,080	4,010	0,334	0,796	
2005	0,266	0,057	0,005	0,372	1,193	0,600	0,249	0,205	0,506	1,127	0,878	0,001	5,461	0,455	1,193	
2006	0,073	0,000	0,760	1,220	0,305	0,375	0,049	0,139	0,252	0,733	0,816	0,181	4,904	0,409	1,220	
2007	0,015	0,000	0,272	0,188	0,249	0,059	0,169	0,823	0,402	1,518	0,126	0,008	3,828	0,319	1,518	
2008	0,009	0,154	0,077	0,340	1,092	0,181	0,054	0,680	0,730	0,763	1,399	0,005	5,484	0,457	1,399	
2011	0,065	0,273	0,985	1,694	1,305	0,197	0,099	0,273	0,350	0,872	1,209	0,657	7,979	0,665	1,694	
2014	0,002	0,270	0,106	0,819	0,360	0,000	0,000	0,131	0,271	1,353	0,466	0,039	3,816	0,318	1,353	

Tabla 68. Oferta hídrica total m3/s microcuenca Nivel III Quebrada Santacruz

Mid	crocuen	ca Nive	el III		Cód	digo			Área	(Km2)			Esta	ción	
Q	uebrada	a Sama	ca		2319-01-04-03				32,	694			Vivero	Surata	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	0,001	0,021	0,053	0,052	0,143	0,038	0,047	0,056	0,115	0,161	0,077	0,114	0,878	0,073	0,161
1986	0,009	0,038	0,039	0,273	0,118	0,016	0,001	0,015	0,160	0,221	0,077	0,005	0,971	0,081	0,273
1987	0,005	0,000	0,022	0,046	0,111	0,069	0,008	0,016	0,106	0,284	0,125	0,031	0,823	0,069	0,284
1988	0,002	0,053	0,013	0,098	0,054	0,067	0,018	0,214	0,126	0,246	0,267	0,020	1,179	0,098	0,267
1989	0,032	0,018	0,134	0,044	0,074	0,024	0,007	0,066	0,118	0,142	0,018	0,032	0,708	0,059	0,142
1990	0,010	0,070	0,105	0,288	0,051	0,083	0,004	0,051	0,036	0,219	0,116	0,059	1,093	0,091	0,288
1991	0,001	0,000	0,093	0,142	0,157	0,032	0,000	0,001	0,082	0,082	0,173	0,007	0,770	0,064	0,173
1992	0,011	0,014	0,007	0,066	0,254	0,061	0,007	0,017	0,029	0,056	0,108	0,041	0,673	0,056	0,254
1993	0,013	0,000	0,056	0,201	0,221	0,016	0,003	0,009	0,096	0,088	0,214	0,018	0,936	0,078	0,221
1994	0,004	0,011	0,052	0,219	0,048	0,004	0,002	0,016	0,113	0,130	0,208	0,004	0,812	0,068	0,219
1995	0,000	0,020	0,071	0,101	0,107	0,091	0,020	0,148	0,118	0,205	0,014	0,006	0,901	0,075	0,205

Mid	crocuen	ca Nive	el III		Cód	digo			Área	(Km2)			Esta	ción	
Q	uebrada	a Sama	ca		2319-01-04-03				32,	694			Vivero	Surata	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1996	0,004	0,067	0,119	0,036	0,074	0,063	0,101	0,074	0,105	0,162	0,091	0,018	0,914	0,076	0,162
1998	0,004	0,017	0,014	0,142	0,162	0,032	0,035	0,068	0,132	0,207	0,108	0,117	1,037	0,086	0,207
1999	0,010	0,076	0,027	0,165	0,107	0,120	0,026	0,098	0,115	0,163	0,189	0,019	1,116	0,093	0,189
2000	0,024	0,065	0,015	0,103	0,036	0,023	0,026	0,000	0,158	0,077	0,092	0,002	0,623	0,052	0,158
2001	0,009	0,003	0,095	0,032	0,067	0,002	0,007	0,000	0,113	0,165	0,075	0,025	0,591	0,049	0,165
2002	0,001	0,000	0,140	0,177	0,178	0,069	0,014	0,000	0,102	0,143	0,023	0,051	0,899	0,075	0,178
2003	0,000	0,013	0,046	0,220	0,013	0,045	0,017	0,053	0,197	0,278	0,097	0,068	1,046	0,087	0,278
2004	0,024	0,006	0,018	0,152	0,143	0,024	0,001	0,011	0,129	0,119	0,123	0,015	0,766	0,064	0,152
2005	0,051	0,011	0,001	0,071	0,228	0,115	0,048	0,039	0,097	0,215	0,168	0,000	1,043	0,087	0,228
2006	0,014	0,000	0,145	0,233	0,058	0,072	0,009	0,027	0,048	0,140	0,156	0,035	0,937	0,078	0,233
2007	0,003	0,000	0,052	0,036	0,048	0,011	0,032	0,157	0,077	0,290	0,024	0,001	0,731	0,061	0,290
2008	0,002	0,029	0,015	0,065	0,209	0,035	0,010	0,130	0,139	0,146	0,267	0,001	1,048	0,087	0,267
2011	0,012	0,052	0,188	0,324	0,249	0,038	0,019	0,052	0,067	0,167	0,231	0,125	1,525	0,127	0,324
2014	0,000	0,052	0,020	0,157	0,069	0,000	0,000	0,025	0,052	0,258	0,089	0,007	0,729	0,061	0,258

Tabla 69. Oferta hídrica total m3/s microcuenca Nivel III Quebrada Samaca

Mi	crocuer	nca Nive	el III		Cód	igo			Área	(Km2)			Esta	ción	
	Río Sa	alamaga			2319-01	-05-01			136	,514			Vivero	Surata	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	0,006	0,183	0,347	0,413	0,998	0,240	0,322	0,483	0,775	1,035	0,491	0,478	5,770	0,481	1,035
1986	0,087	0,293	0,266	1,902	0,981	0,226	0,003	0,080	1,029	1,732	0,489	0,021	7,109	0,592	1,902
1987	0,021	0,000	0,108	0,379	0,857	0,393	0,077	0,205	0,758	1,971	0,856	0,131	5,756	0,480	1,971
1988	0,007	0,445	0,070	0,738	0,436	0,563	0,099	1,507	0,969	1,763	1,471	0,140	8,208	0,684	1,763
1989	0,139	0,115	0,776	0,193	0,542	0,133	0,042	0,442	1,030	0,886	0,107	0,327	4,731	0,394	1,030
1990	0,047	0,345	0,580	1,534	0,256	0,469	0,026	0,415	0,332	1,865	0,831	0,393	7,095	0,591	1,865
1991	0,010	0,000	0,560	0,740	1,002	0,206	0,002	0,025	0,502	0,555	1,021	0,029	4,654	0,388	1,021
1992	0,047	0,066	0,028	0,366	1,286	0,268	0,083	0,188	0,291	0,268	0,648	0,176	3,716	0,310	1,286
1993	0,083	0,002	0,240	1,243	1,393	0,113	0,029	0,046	0,788	0,542	1,120	0,080	5,679	0,473	1,393
1994	0,020	0,120	0,275	1,341	0,557	0,023	0,046	0,102	0,724	1,137	1,154	0,032	5,533	0,461	1,341
1995	0,004	0,091	0,507	0,639	0,915	0,616	0,199	1,023	0,940	1,489	0,068	0,030	6,520	0,543	1,489
1996	0,022	0,313	0,758	0,287	0,482	0,449	0,968	0,579	0,794	1,260	0,679	0,090	6,680	0,557	1,260
1998	0,016	0,074	0,152	1,007	0,999	0,306	0,199	0,448	0,882	1,396	0,540	0,683	6,703	0,559	1,396
1999	0,044	0,548	0,133	1,187	0,793	0,598	0,156	0,697	0,906	1,106	1,174	0,127	7,470	0,623	1,187
2000	0,106	0,286	0,090	0,446	0,285	0,240	0,188	0,004	1,098	0,528	0,654	0,060	3,984	0,332	1,098
2001	0,048	0,023	0,483	0,138	0,542	0,017	0,034	0,016	0,721	0,991	0,430	0,131	3,573	0,298	0,991
2002	0,003	0,005	0,708	1,088	1,128	0,407	0,060	0,004	0,867	0,818	0,099	0,387	5,575	0,465	1,128
2003	0,002	0,053	0,227	1,363	0,080	0,430	0,127	0,501	1,226	1,729	0,647	0,371	6,757	0,563	1,729
2004	0,105	0,038	0,207	0,943	0,851	0,102	0,026	0,124	0,978	0,908	0,840	0,065	5,186	0,432	0,978
2005	0,225	0,046	0,004	0,436	1,496	0,763	0,393	0,309	0,679	1,489	1,362	0,012	7,214	0,601	1,496
2006	0,063	0,003	0,832	1,421	0,648	0,447	0,066	0,348	0,334	0,922	0,779	0,144	6,008	0,501	1,421
2007	0,016	0,002	0,372	0,509	0,524	0,067	0,277	1,052	0,551	2,099	0,187	0,025	5,680	0,473	2,099
2008	0,070	0,160	0,081	0,465	1,387	0,195	0,170	1,002	0,968	1,067	1,687	0,005	7,256	0,605	1,687
2011	0,053	0,362	1,094	2,118	1,860	0,372	0,192	0,402	0,504	1,042	1,356	0,714	10,069	0,839	2,118
2014	0,001	0,226	0,145	0,814	0,481	0,001	0,000	0,222	0,294	1,665	0,651	0,089	4,589	0,382	1,665

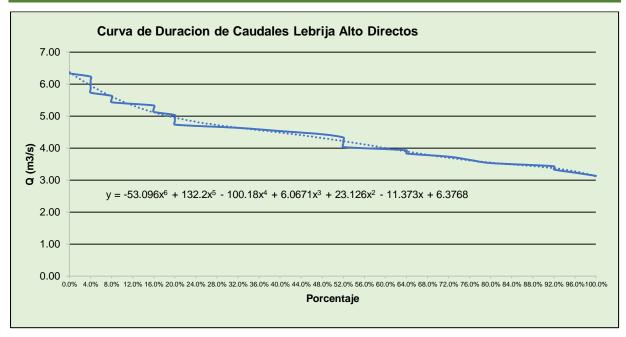
Tabla 70. Oferta hídrica total m3/s microcuenca Quebrada Salamaga

Mi	crocuen	ica Nive	el III		Cód	digo			Área	(Km2)		Estación			
C	Quebrac	la Silga	ra		2319-0	1-05-02			81,	525			Cac	hiri	
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	med	max
1985	0,002	0,096	0,126	0,197	0,401	0,083	0,124	0,249	0,294	0,363	0,168	0,002	2,106	0,175	0,401
1986	0,051	0,135	0,104	0,761	0,488	0,160	0,000	0,018	0,360	0,808	0,168	0,000	3,052	0,254	0,808
1987	0,001	0,000	0,015	0,189	0,394	0,103	0,046	0,138	0,315	0,786	0,332	0,001	2,320	0,193	0,786
1988	0,000	0,223	0,014	0,328	0,211	0,281	0,024	0,615	0,443	0,735	0,355	0,056	3,286	0,274	0,735
1989	0,003	0,041	0,217	0,009	0,233	0,033	0,014	0,167	0,537	0,295	0,031	0,194	1,774	0,148	0,537
1990	0,003	0,053	0,140	0,331	0,041	0,123	0,009	0,204	0,182	0,949	0,348	0,145	2,530	0,211	0,949
1991	0,004	0,000	0,173	0,149	0,345	0,071	0,001	0,021	0,162	0,212	0,300	0,000	1,438	0,120	0,345
1992	0,000	0,008	0,000	0,090	0,224	0,013	0,053	0,115	0,172	0,033	0,195	0,004	0,907	0,076	0,224
1993	0,028	0,001	0,005	0,404	0,472	0,047	0,018	0,007	0,385	0,173	0,228	0,006	1,772	0,148	0,472
1994	0,003	0,075	0,057	0,426	0,357	0,005	0,036	0,035	0,250	0,596	0,287	0,017	2,144	0,179	0,596
1995	0,003	0,005	0,213	0,215	0,470	0,237	0,115	0,405	0,445	0,634	0,009	0,005	2,757	0,230	0,634
1996	0,003	0,035	0,259	0,136	0,173	0,187	0,544	0,271	0,358	0,582	0,300	0,016	2,862	0,239	0,582
1998	0,001	0,005	0,092	0,414	0,323	0,174	0,054	0,165	0,330	0,532	0,088	0,195	2,373	0,198	0,532
1999	0,001	0,231	0,022	0,498	0,346	0,095	0,047	0,288	0,426	0,427	0,383	0,048	2,811	0,234	0,498
2000	0,008	0,013	0,029	0,015	0,135	0,142	0,078	0,004	0,436	0,204	0,268	0,051	1,383	0,115	0,436
2001	0,010	0,012	0,088	0,004	0,264	0,011	0,005	0,016	0,251	0,300	0,117	0,028	1,104	0,092	0,300
2002	0,001	0,003	0,123	0,348	0,383	0,119	0,000	0,003	0,444	0,221	0,004	0,173	1,822	0,152	0,444
2003	0,002	0,000	0,036	0,443	0,028	0,241	0,057	0,282	0,404	0,567	0,242	0,086	2,388	0,199	0,567
2004	0,004	0,012	0,131	0,308	0,253	0,004	0,022	0,076	0,440	0,411	0,326	0,001	1,987	0,166	0,440
2005	0,013	0,001	0,000	0,138	0,544	0,284	0,195	0,145	0,275	0,589	0,662	0,011	2,857	0,238	0,662
2006	0,004	0,003	0,225	0,447	0,405	0,148	0,028	0,237	0,133	0,336	0,128	0,000	2,095	0,175	0,447
2007	0,004	0,002	0,155	0,359	0,325	0,020	0,142	0,395	0,230	0,888	0,086	0,019	2,625	0,219	0,888
2008	0,062	0,037	0,020	0,193	0,516	0,051	0,126	0,460	0,386	0,458	0,571	0,000	2,880	0,240	0,571
2011	0,001	0,144	0,307	0,766	0,819	0,215	0,114	0,185	0,225	0,346	0,391	0,190	3,702	0,309	0,819
2014	0,000	0,011	0,060	0,161	0,193	0,001	0,000	0,117	0,078	0,585	0,280	0,058	1,544	0,129	0,585

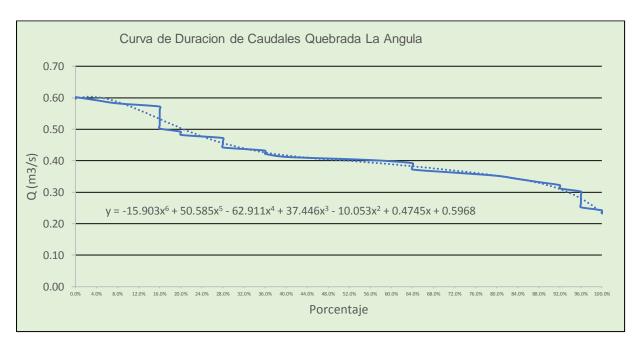
Tabla 71. Oferta hídrica total m3/s microcuenca Nivel III Quebrada Silgara

En la Tabla 72 se observan las Ecuaciones 25 a 44 correspondientes a duración de caudales para las estaciones analizadas, las cuales se hallaron con polinomios grado para darle una mayor tendencia a la curva.

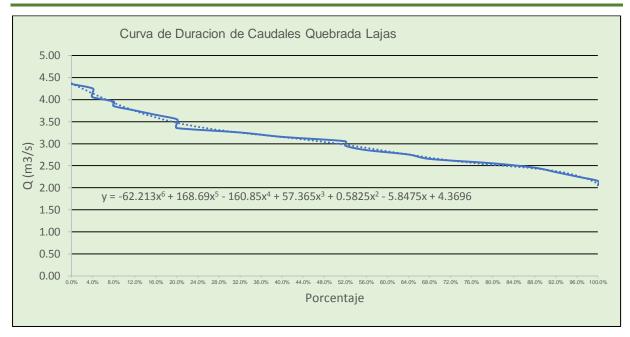
Microcuenca Nivel III	Ecuación	
Lebrija Alto Directos	$y = -53,096x^6 + 132,2x^5 - 100,18x^4 + 6,0671x^3 + 23,126x^2 - 11,373x + 6,3768$	Ecuación 25
Quebrada La Angula	$y = -21,413x^6 + 35,521x^5 + 13,128x^4 - 57,647x^3 + 39,112x^2 - 10,372x + 2,3221$	Ecuación 26
Quebrada Lajas	$y = -62,213x^6 + 168,69x^5 - 160,85x^4 + 57,365x^3 + 0,5825x^2 - 5,8475x + 4,3696$	Ecuación 27
Quebrada Aburrida	$y = -0.1815x^3 + 0.2638x^2 - 0.1536x + 0.1138$	Ecuación 28



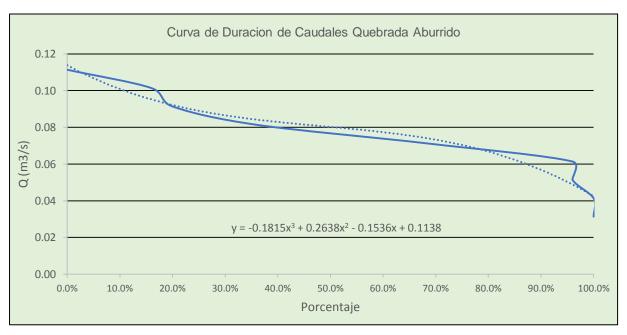
Microcuenca Nivel III	Ecuación	
Quebrada La Honda	$y = -14,874x^6 + 45,312x^5 - 52,702x^4 + 28,831x^3 - 7,1762x^2 + 0,4999x + 0,1693$	Ecuación 29
Río de Oro Bajo	$y = -26,646x^6 + 72,302x^5 - 65,342x^4 + 15,843x^3 + 7,5886x^2 - 4,6706x + 1,4472$	Ecuación 30
Río de Oro Medio	$y = -20,731x^6 + 56,449x^5 - 51,911x^4 + 14,382x^3 + 4,2175x^2 - 2,9887x + 0,8777$	Ecuación 31
Río de Oro Alto	$y = -13,933x^6 + 36,495x^5 - 33,122x^4 + 10,525x^3 + 0,9063x^2 - 1,1421x + 0,3346$	Ecuación 32
Rio Hato	$y = -14,953x^6 + 45,536x^5 - 52,939x^4 + 28,945x^3 - 7,2005x^2 + 0,5018x + 0,1705$	Ecuación 33
Rio Frio	$y = -13,394x^6 + 34,825x^5 - 31,275x^4 + 9,9098x^3 + 0,6272x^2 - 0,9166x + 0,2721$	Ecuación 34
Rio Tona	$y = -0.5281x^6 - 1.0843x^5 + 6.1794x^4 - 8.0907x^3 + 4.5308x^2 - 1.3084x + 0.4702$	Ecuación 35
Rio Charta	$y = 1,2723x^6 - 7,4459x^5 + 14,295x^4 - 12,581x^3 + 5,4475x^2 - 1,1859x + 0,3107$	Ecuación 36
Rio Vetas	$y = 6,9917x^6 - 28,772x^5 + 45,648x^4 - 35,545x^3 + 14,077x^2 - 2,8089x + 0,638$	Ecuación 37
Río Surata Alto	$y = 17,576x^6 - 67,442x^5 + 101,06x^4 - 74,946x^3 + 28,464x^2 - 5,4723x + 1,1964$	Ecuación 38
Rio Surata Bajo	$y = 57,988x^6 - 211,21x^5 + 299,45x^4 - 207,55x^3 + 72,149x^2 - 12,254x + 2,4122$	Ecuación 39
Río Negro Bajo	$y = 19,31x^6 - 70,538x^5 + 100,81x^4 - 71,312x^3 + 25,848x^2 - 4,7602x + 1,0215$	Ecuación 40
Quebrada Santacruz	$y = 8,5923x^6 - 34,223x^5 + 52,407x^4 - 39,257x^3 + 14,945x^2 - 2,9056x + 0,6868$	Ecuación 41
Quebrada Samaca	$y = 2,3936x^6 - 9,0025x^5 + 12,828x^4 - 8,8256x^3 + 3,066x^2 - 0,5506x + 0,1381$	Ecuación 42
Río Salamaga	$y = 24,717x^6 - 83,804x^5 + 110,91x^4 - 72,69x^3 + 24,513x^2 - 4,2475x + 0,8952$	Ecuación 43
Quebrada Silgara	$y = 1,4603x^6 - 7,8165x^5 + 13,658x^4 - 10,797x^3 + 4,0982x^2 - 0,8575x + 0,3231$	Ecuación 44


Tabla 72. Ecuaciones para las curvas de duración de caudales en las microcuencas Nivel III

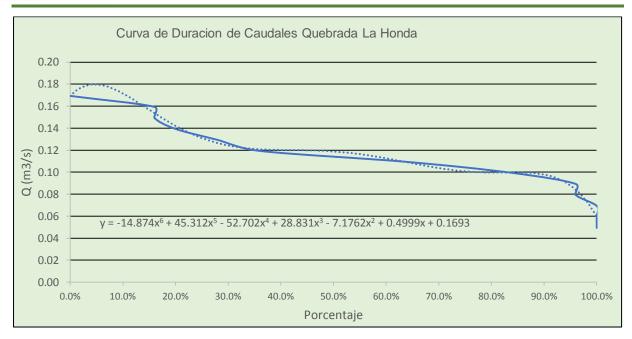
Las curvas de tenencia de duración de caudales de las microcuencas Lebrija Alto Directos, Quebrada La Angula, Quebrada Lajas, Quebrada Aburrido, Quebrada La Honda, Rio de Oro Bajo, Rio de Oro Medio, Rio de Oro Alto, Rio Hato, Rio Frio, Rio Tona, Rio Charta, Rio Vetas, Rio Suratá Alto, Rio Surata Bajo, Rio Negro Bajo, Quebrada Santacruz, Quebrada Samaca y Quebrada Salamaga, están representadas en las Gráficas 37-56



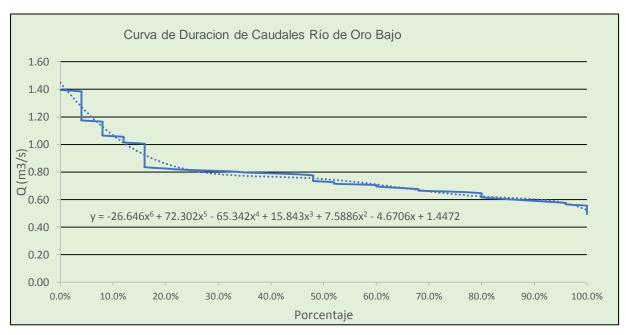
Gráfica 37. Curva de duración de caudales Lebrija Alto Directos



Gráfica 38. Curva de duración de caudales Quebrada La Angula

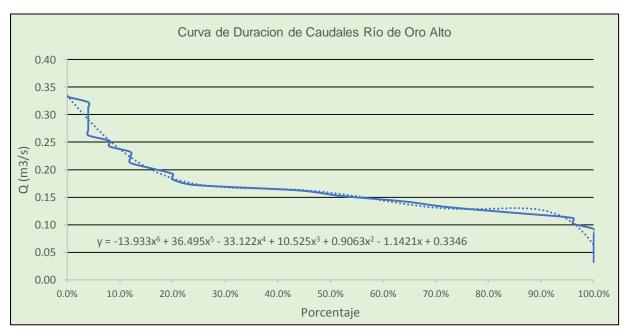


Gráfica 39. Curva de duración de caudales Quebrada Lajas

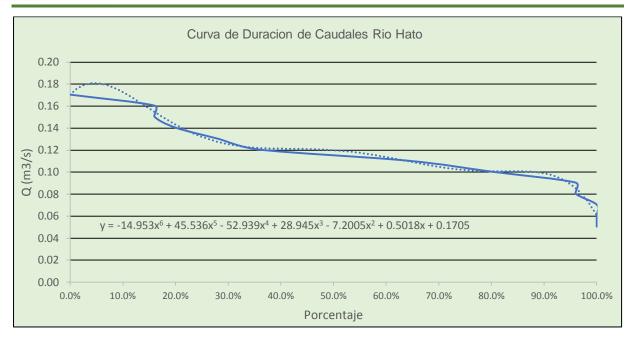


Gráfica 40. Curva de duración de caudales Quebrada Aburrido

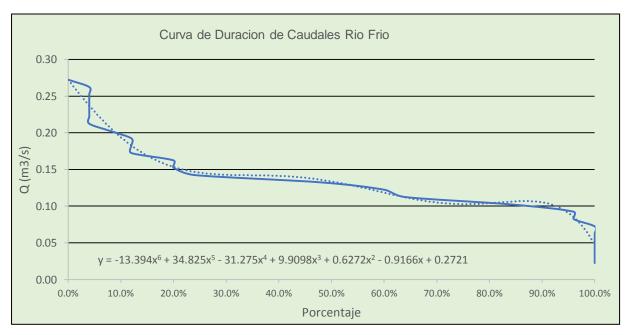
Gráfica 41. Curva de duración de caudales Quebrada La Honda



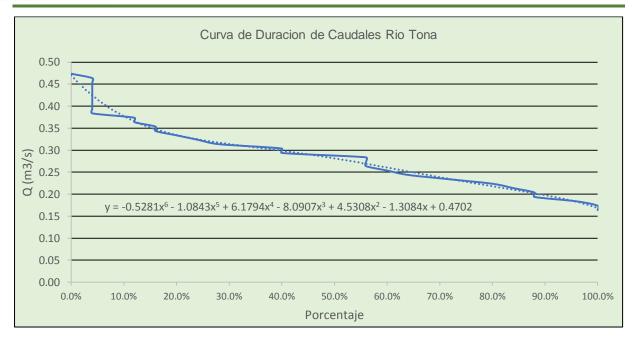
Gráfica 42. Curva de duración de caudales Rio de Oro Bajo



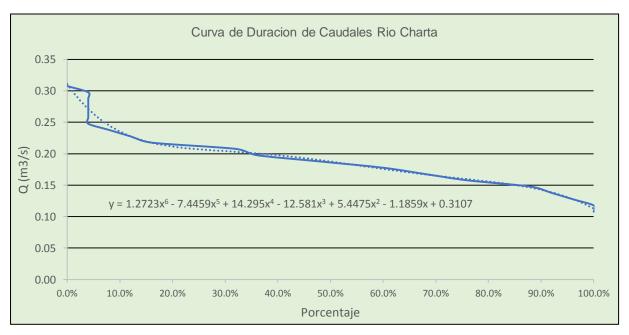
Gráfica 43. Curva de duración de caudales Rio de Oro Medio



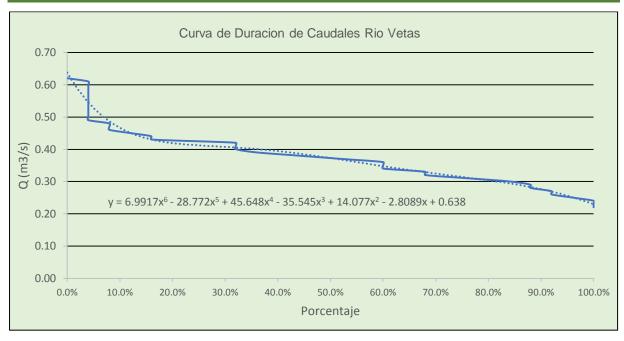
Gráfica 44. Curva de duración de caudales Rio de Oro Alto



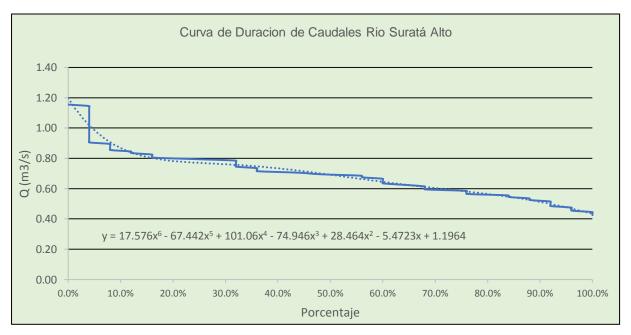
Gráfica 45. Curva de duración de caudales Rio Hato



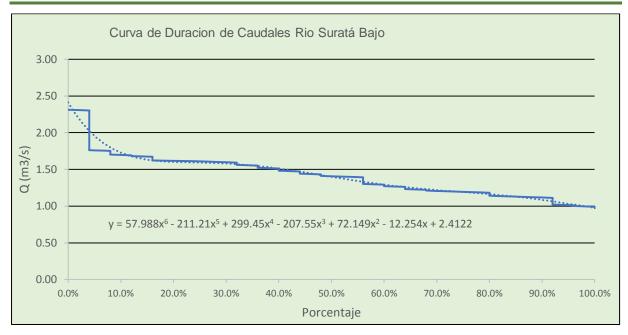
Gráfica 46. Curva de duración de caudales Rio Frio



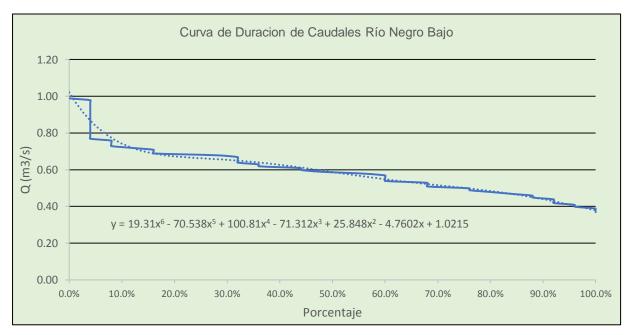
Gráfica 47. Curva de duración de caudales Rio Tona



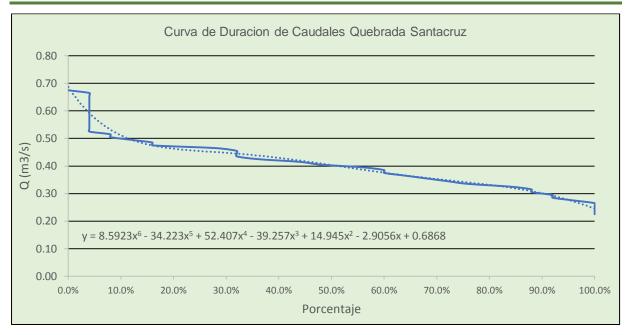
Gráfica 48. Curva de duración de caudales Rio Charta



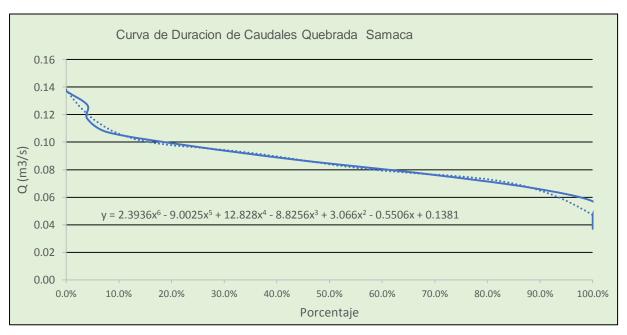
Gráfica 49. Curva de duración de caudales Rio Vetas



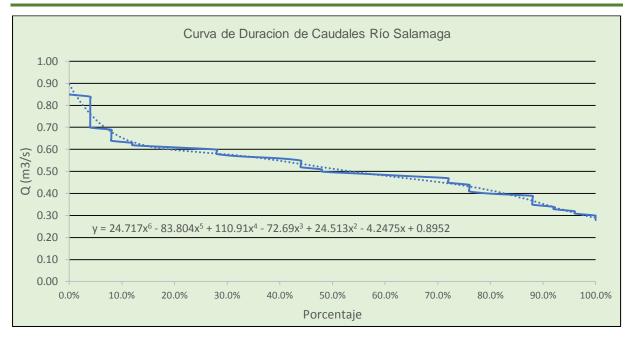
Gráfica 50. Curva de duración de caudales Rio Suratá Alto



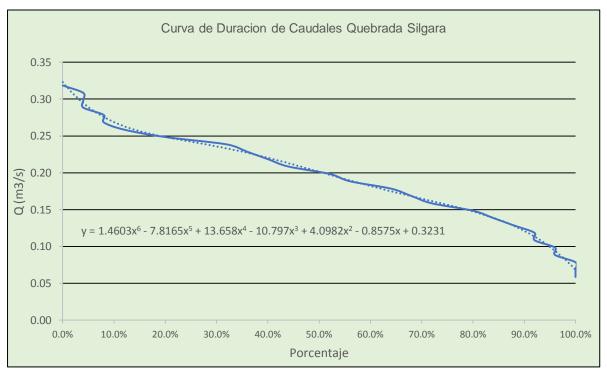
Gráfica 51. Curva de duración de caudales Rio Surata Bajo



Gráfica 52. Curva de duración de caudales Rio Negro Bajo



Gráfica 53. Curva de duración de caudales Quebrada Santacruz



Gráfica 54. Curva de duración de caudales Quebrada Samaca

Gráfica 55. Curva de duración de caudales Quebrada Salamaga

Gráfica 56. Curva de duración de caudales Quebrada Silgara

El cálculo del Índice de Regulación Hídrica generado por medio de tratamiento de la información de precipitación y evapotranspiración, se presenta en la Tabla 73 y Figura 55)

Microcuenca Nivel III	Vt	Vp	IRH	Descripción
Lebrija Alto Directos	4.328	3.979	0.919	MUY ALTO
Quebrada La Angula	0.421	0.378	0.896	MUY ALTO
Quebrada Lajas	3.039	2.804	0.923	MUY ALTO
Quebrada aburrido	0.080	0.074	0.928	MUY ALTO
Quebrada La Honda	0.122	0.110	0.908	MUY ALTO
Río de Oro Bajo	0.778	0.698	0.898	MUY ALTO
Río de Oro Medio	0.449	0.400	0.890	MUY ALTO
Río de Oro Alto	0.165	0.145	0.878	MUY ALTO
Rio Hato	0.123	0.112	0.909	MUY ALTO
Rio Frio	0.136	0.120	0.883	MUY ALTO
Rio Tona	0.283	0.255	0.900	MUY ALTO
Rio Charta	0.188	0.173	0.920	MUY ALTO
Rio Vetas	0.373	0.342	0.917	MUY ALTO
Río Suratá Alto	0.694	0.635	0.915	MUY ALTO
Rio Suratá Bajo	1.420	1.296	0.913	MUY ALTO
Río Negro Bajo	0.594	0.541	0.911	MUY ALTO
Quebrada Santacruz	0.406	0.371	0.912	MUY ALTO
Quebrada Samaca	0.086	0.078	0.912	MUY ALTO
Río Salamaga	0.516	0.467	0.906	MUY ALTO
Quebrada Silgara	0.199	0.176	0.888	MUY ALTO

Tabla 73. Índice de regulación hídrica

Figura 55. Índice de regulación hídrica IRH Cuenca Alta Rio Lebrija

7.4 Uso del agua superficial (IUA)

El caculo del IUA se determina adecuado a lo mencionado en el numeral 5.2.3, de acuerdo a la ecuación 18. (ver Tabla 74, Figura 56)

Quebrada La Angula 2319-01-01-02 3.544 0.206 5.815 Bajo Quebrada Lajas 2319-01-01-03 0.831 0.009 1.107 Bajo Quebrada Aburrido 2319-01-01-04 0.606 0.099 16.271 Moderada Quebrada La Honda 2319-01-01-05 0.954 0.038 4.009 Bajo Río de Oro Bajo 2319-01-02-01 8.569 0.020 0.239 Muy Bajo Río de Oro Medio 2319-01-02-02 5.219 0.197 3.776 Bajo Río de Oro Alto 2319-01-02-03 1.986 0.944 47.551 Alto Río Hato 2319-01-02-04 0.960 0.483 50.321 Muy Alto Río Frio 2319-01-02-05 1.617 0.799 49.418 Alto Río Tona 2319-01-03-01 2.149 1.264 58.851 Muy Alto Río Charta 2319-01-03-02 1.430 0.099 6.932 Bajo Río Suratá Alto 2319-01-03-04 5.498 0.049 <	Datos gener	ales	oferta hídrica superficial disponible.m3/s	Demanda Hídrica m3/s	Índice de uso de agua	Significado
Quebrada La Angula 2319-01-01-02 3.544 0.206 5.815 Bajo Quebrada Lajas 2319-01-01-03 0.831 0.009 1.107 Bajo Quebrada Aburrido 2319-01-01-04 0.606 0.099 16.271 Moderada Quebrada La Honda 2319-01-01-05 0.954 0.038 4.009 Bajo Río de Oro Bajo 2319-01-02-01 8.569 0.020 0.239 Muy Bajo Río de Oro Medio 2319-01-02-02 5.219 0.197 3.776 Bajo Río de Oro Alto 2319-01-02-03 1.986 0.944 47.551 Alto Río Hato 2319-01-02-04 0.960 0.483 50.321 Muy Alto Río Frio 2319-01-02-05 1.617 0.799 49.418 Alto Río Tona 2319-01-03-01 2.149 1.264 58.851 Muy Alto Río Charta 2319-01-03-02 1.430 0.099 6.932 Bajo Río Suratá Alto 2319-01-03-04 5.498 0.049 <	Microcuenca Nivel III		ОН	Dh	IUA	IUA
Quebrada Lajas 2319-01-01-03 0.831 0.009 1.107 Bajo Quebrada Aburrido 2319-01-01-04 0.606 0.099 16.271 Moderada Quebrada La Honda 2319-01-01-05 0.954 0.038 4.009 Bajo Río de Oro Bajo 2319-01-02-01 8.569 0.020 0.239 Muy Bajo Río de Oro Medio 2319-01-02-02 5.219 0.197 3.776 Bajo Río de Oro Alto 2319-01-02-03 1.986 0.944 47.551 Alto Río Hato 2319-01-02-04 0.960 0.483 50.321 Muy Alto Río Frio 2319-01-02-05 1.617 0.799 49.418 Alto Río Tona 2319-01-03-01 2.149 1.264 58.851 Muy Alto Río Charta 2319-01-03-02 1.430 0.099 6.932 Bajo Río Suratá Alto 2319-01-03-04 5.498 0.049 0.884 Muy Bajo Río Suratá Bajo 2319-01-03-05 11.445 3.935	Lebrija Alto Directos	2319-01-01-01	37.041	0.072	0.194	Muy Bajo
Quebrada Aburrido 2319-01-01-04 0.606 0.099 16.271 Moderado Quebrada La Honda 2319-01-01-05 0.954 0.038 4.009 Bajo Río de Oro Bajo 2319-01-02-01 8.569 0.020 0.239 Muy Bajo Río de Oro Medio 2319-01-02-02 5.219 0.197 3.776 Bajo Río de Oro Alto 2319-01-02-03 1.986 0.944 47.551 Alto Río Hato 2319-01-02-04 0.960 0.483 50.321 Muy Alto Río Frio 2319-01-02-05 1.617 0.799 49.418 Alto Río Tona 2319-01-03-01 2.149 1.264 58.851 Muy Alto Río Charta 2319-01-03-02 1.430 0.099 6.932 Bajo Río Vetas 2319-01-03-03 2.931 0.267 9.094 Bajo Río Suratá Alto 2319-01-03-04 5.498 0.049 0.884 Muy Bajo Río Suratá Bajo 2319-01-03-05 11.445 3.935	Quebrada La Angula	2319-01-01-02	3.544	0.206	5.815	Bajo
Quebrada La Honda 2319-01-01-05 0.954 0.038 4.009 Bajo Río de Oro Bajo 2319-01-02-01 8.569 0.020 0.239 Muy Bajo Río de Oro Medio 2319-01-02-02 5.219 0.197 3.776 Bajo Río de Oro Alto 2319-01-02-03 1.986 0.944 47.551 Alto Rio Hato 2319-01-02-04 0.960 0.483 50.321 Muy Alto Rio Frio 2319-01-02-05 1.617 0.799 49.418 Alto Rio Tona 2319-01-03-01 2.149 1.264 58.851 Muy Alto Rio Charta 2319-01-03-02 1.430 0.099 6.932 Bajo Rio Vetas 2319-01-03-03 2.931 0.267 9.094 Bajo Río Suratá Alto 2319-01-03-04 5.498 0.049 0.884 Muy Bajo Rio Suratá Bajo 2319-01-03-05 11.445 3.935 34.385 Alto	Quebrada Lajas	2319-01-01-03	0.831	0.009	1.107	Bajo
Río de Oro Bajo 2319-01-02-01 8.569 0.020 0.239 Muy Bajo Río de Oro Medio 2319-01-02-02 5.219 0.197 3.776 Bajo Río de Oro Alto 2319-01-02-03 1.986 0.944 47.551 Alto Rio Hato 2319-01-02-04 0.960 0.483 50.321 Muy Alto Rio Frio 2319-01-02-05 1.617 0.799 49.418 Alto Rio Tona 2319-01-03-01 2.149 1.264 58.851 Muy Alto Rio Charta 2319-01-03-02 1.430 0.099 6.932 Bajo Rio Vetas 2319-01-03-03 2.931 0.267 9.094 Bajo Río Suratá Alto 2319-01-03-04 5.498 0.049 0.884 Muy Bajo Rio Suratá Bajo 2319-01-03-05 11.445 3.935 34.385 Alto	Quebrada Aburrido	2319-01-01-04	0.606	0.099	16.271	Moderado
Río de Oro Medio 2319-01-02-02 5.219 0.197 3.776 Bajo Río de Oro Alto 2319-01-02-03 1.986 0.944 47.551 Alto Rio Hato 2319-01-02-04 0.960 0.483 50.321 Muy Alto Rio Frio 2319-01-02-05 1.617 0.799 49.418 Alto Rio Tona 2319-01-03-01 2.149 1.264 58.851 Muy Alto Rio Charta 2319-01-03-02 1.430 0.099 6.932 Bajo Rio Vetas 2319-01-03-03 2.931 0.267 9.094 Bajo Río Suratá Alto 2319-01-03-04 5.498 0.049 0.884 Muy Bajo Rio Suratá Bajo 2319-01-03-05 11.445 3.935 34.385 Alto	Quebrada La Honda	2319-01-01-05	0.954	0.038	4.009	Bajo
Río de Oro Alto 2319-01-02-03 1.986 0.944 47.551 Alto Rio Hato 2319-01-02-04 0.960 0.483 50.321 Muy Alto Rio Frio 2319-01-02-05 1.617 0.799 49.418 Alto Rio Tona 2319-01-03-01 2.149 1.264 58.851 Muy Alto Rio Charta 2319-01-03-02 1.430 0.099 6.932 Bajo Rio Vetas 2319-01-03-03 2.931 0.267 9.094 Bajo Río Suratá Alto 2319-01-03-04 5.498 0.049 0.884 Muy Bajo Rio Suratá Bajo 2319-01-03-05 11.445 3.935 34.385 Alto	Río de Oro Bajo	2319-01-02-01	8.569	0.020	0.239	Muy Bajo
Rio Hato 2319-01-02-04 0.960 0.483 50.321 Muy Alto Rio Frio 2319-01-02-05 1.617 0.799 49.418 Alto Rio Tona 2319-01-03-01 2.149 1.264 58.851 Muy Alto Rio Charta 2319-01-03-02 1.430 0.099 6.932 Bajo Rio Vetas 2319-01-03-03 2.931 0.267 9.094 Bajo Río Suratá Alto 2319-01-03-04 5.498 0.049 0.884 Muy Bajo Rio Suratá Bajo 2319-01-03-05 11.445 3.935 34.385 Alto	Río de Oro Medio	2319-01-02-02	5.219	0.197	3.776	Bajo
Rio Frio 2319-01-02-05 1.617 0.799 49.418 Alto Rio Tona 2319-01-03-01 2.149 1.264 58.851 Muy Alto Rio Charta 2319-01-03-02 1.430 0.099 6.932 Bajo Rio Vetas 2319-01-03-03 2.931 0.267 9.094 Bajo Río Suratá Alto 2319-01-03-04 5.498 0.049 0.884 Muy Bajo Rio Suratá Bajo 2319-01-03-05 11.445 3.935 34.385 Alto	Río de Oro Alto	2319-01-02-03	1.986	0.944	47.551	Alto
Rio Tona 2319-01-03-01 2.149 1.264 58.851 Muy Alto Rio Charta 2319-01-03-02 1.430 0.099 6.932 Bajo Rio Vetas 2319-01-03-03 2.931 0.267 9.094 Bajo Río Suratá Alto 2319-01-03-04 5.498 0.049 0.884 Muy Bajo Rio Suratá Bajo 2319-01-03-05 11.445 3.935 34.385 Alto	Rio Hato	2319-01-02-04	0.960	0.483	50.321	Muy Alto
Rio Charta 2319-01-03-02 1.430 0.099 6.932 Bajo Rio Vetas 2319-01-03-03 2.931 0.267 9.094 Bajo Río Suratá Alto 2319-01-03-04 5.498 0.049 0.884 Muy Bajo Rio Suratá Bajo 2319-01-03-05 11.445 3.935 34.385 Alto	Rio Frio	2319-01-02-05	1.617	0.799	49.418	Alto
Rio Vetas 2319-01-03-03 2.931 0.267 9.094 Bajo Río Suratá Alto 2319-01-03-04 5.498 0.049 0.884 Muy Bajo Rio Suratá Bajo 2319-01-03-05 11.445 3.935 34.385 Alto	Rio Tona	2319-01-03-01	2.149	1.264	58.851	Muy Alto
Río Suratá Alto 2319-01-03-04 5.498 0.049 0.884 Muy Bajo Rio Suratá Bajo 2319-01-03-05 11.445 3.935 34.385 Alto	Rio Charta	2319-01-03-02	1.430	0.099	6.932	Bajo
Rio Suratá Bajo 2319-01-03-05 11.445 3.935 34.385 Alto	Rio Vetas	2319-01-03-03	2.931	0.267	9.094	Bajo
	Río Suratá Alto	2319-01-03-04	5.498	0.049	0.884	Muy Bajo
	Rio Suratá Bajo	2319-01-03-05	11.445	3.935	34.385	Alto
Río Negro Bajo 2319-01-04-01 4.699 0.043 0.917 Muy Bajo	Río Negro Bajo	2319-01-04-01	4.699	0.043	0.917	Muy Bajo
Quebrada Santacruz 2319-01-04-02 3.194 0.010 0.326 Muy Bajo	Quebrada Santacruz	2319-01-04-02	3.194	0.010	0.326	Muy Bajo
Quebrada Samaca 2319-01-04-03 0.610 0.014 2.251 Bajo	Quebrada Samaca	2319-01-04-03	0.610	0.014	2.251	Bajo
Río Salamaga 2319-01-05-01 4.050 0.029 0.714 Muy Bajo	Río Salamaga	2319-01-05-01	4.050	0.029	0.714	Muy Bajo
Quebrada Silgara 2319-01-05-02 1.502 0.006 0.369 Muy Bajo	Quebrada Silgara	2319-01-05-02	1.502	0.006	0.369	Muy Bajo

Tabla 74. IUA Condición hidrológica (Año normal) Cuenca Alto Lebrija

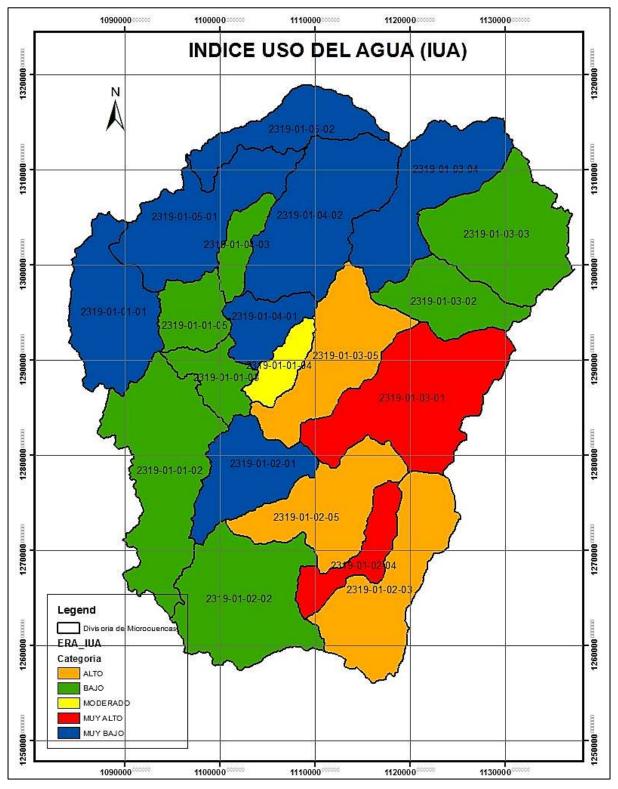


Figura 56. Índice de uso de agua Cuenca alta del rio Lebrija. Condición hidrológica (Año normal)

7.5 Índice de vulnerabilidad por desabastecimiento hídrico (IVH)

El IVH se define como el grado de fragilidad del sistema hídrico para mantener una oferta para el abastecimiento de agua, que ante amenazas tales como periodos largos de estiaje o eventos como el Fenómeno Cálido del Pacífico (El Niño), podría generar riesgos de desabastecimiento. Se determina a través de una matriz de relación de rangos del índice de regulación hídrica (IRH) y el índice de uso de agua (IUA). (ver Tabla 75, Figura 57)

Datos generales		Índice de uso de agua	Índice de Regulación Hídrica	Significado
Microcuenca Nivel III	Código Microcuenca Nivel III	IUA	IRH	IVH
Lebrija Alto Directos	2319-01-01-01	Muy Bajo	Muy alto	Muy Bajo
Quebrada La Angula	2319-01-01-02	Bajo	Muy alto	Bajo
Quebrada Lajas	2319-01-01-03	Bajo	Muy alto	Bajo
Quebrada aburrido	2319-01-01-04	Moderado	Muy alto	Medio
Quebrada La Honda	2319-01-01-05	Bajo	Muy alto	Bajo
Río de Oro Bajo	2319-01-02-01	Muy Bajo	Muy alto	Muy Bajo
Río de Oro Medio	2319-01-02-02	Bajo	Muy alto	Bajo
Río de Oro Alto	2319-01-02-03	Alto	Muy alto	Medio
Rio Hato	2319-01-02-04	Muy Alto	Muy alto	Medio
Rio Frio	2319-01-02-05	Alto	Muy alto	Medio
Rio Tona	2319-01-03-01	Muy Alto	Muy alto	Medio
Rio Charta	2319-01-03-02	Bajo	Muy alto	Bajo
Rio Vetas	2319-01-03-03	Bajo	Muy alto	Bajo
Río Surata Alto	2319-01-03-04	Muy Bajo	Muy alto	Muy Bajo
Rio Surata Bajo	2319-01-03-05	Alto	Muy alto	Medio
Río Negro Bajo	2319-01-04-01	Muy Bajo	Muy alto	Muy Bajo
Quebrada Santacruz	2319-01-04-02	Muy Bajo	Muy alto	Muy Bajo
Quebrada Samaca	2319-01-04-03	Bajo	Muy alto	Bajo
Río Salamaga	2319-01-05-01	Muy Bajo	Muy alto	Muy Bajo
Quebrada Silgara	2319-01-05-02	Muy Bajo	Muy alto	Muy Bajo

Tabla 75. IVH Cuenca Nivel I Alto Lebrija. Condición hidrológica (Año normal)

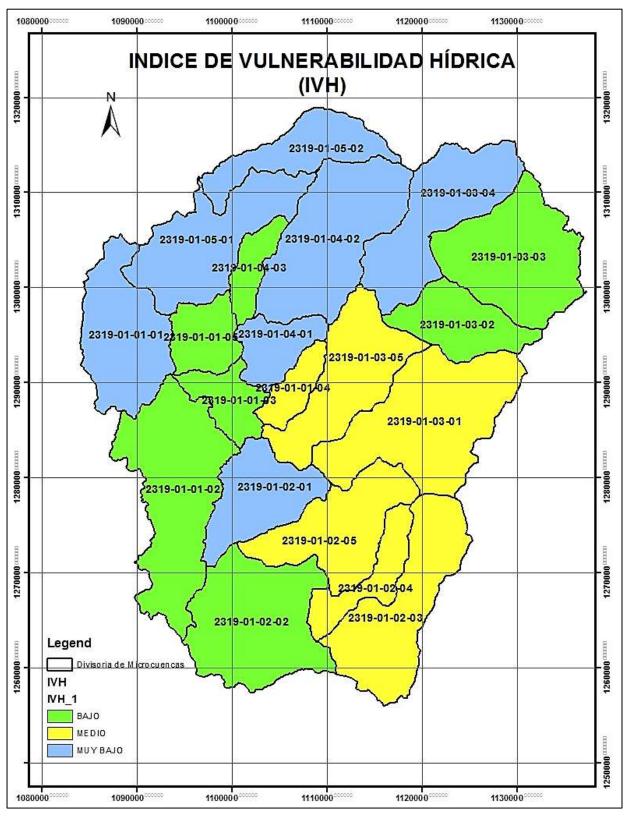


Figura 57. Índice de vulnerabilidad por desabastecimiento hídrico. Cuenca Nivel I Alto Lebrija

El uso primordial del recurso hídrico en la Cuenca Nivel I Alto Lebrija, lo constituye el suministro para el consumo de la población asentada especialmente en el Área Metropolitana de Bucaramanga.

Las cuatro áreas o zonas importantes que abastecen a centros urbanos se encuentran definidas de la siguiente manera: la primera área corresponde a la microcuenca Nivel III Rio Surata, donde se ubican las captaciones sobre la cuenca del rio Tona y la estación de bombeo de Bosconia sobre el rio Surata. Una segunda área se encuentra delimitada en la parte alta de la microcuenca Nivel III la Angula abastecedora de la población de Lebrija. La tercera área concierne a la parte alta del rio Frio que le suministra a la población de Floridablanca y Rio Hato que abastece el acueducto de Ruitoque y una cuarta área se define en la parte alta de la microcuenca Nivel III Rio de Oro que abastece a la comunidad de Piedecuesta.

7.6 Índice de susceptibilidad por eventos torrenciales (IVET)

Este índice representa el grado de susceptibilidad de una cuenca a presentar eventos torrenciales amenazantes, relacionando las características de la forma de la cuenca y las condiciones hidrológicas de dicha cuenca (IDEAM, 2013), el índice varía cualitativamente desde bajo a muy alto, dependiendo estrictamente de una matriz de decisión entre el índice de variabilidad del drenaje y el índice morfométrico de torrencialidad.

Por lo tanto, la morfometría de la cuenca está definida por el índice Morfométrico de Torrencialidad, que relaciona los parámetros morfométricos tales como: el coeficiente de compacidad o de forma, la pendiente media de la cuenca y la densidad de drenaje, que son indicativos de la forma como se concentra la escorrentía, la oportunidad de infiltración, la velocidad y capacidad de arrastre de sedimentos en la cuenca.

7.7 Índice morfométrico de torrencialidad (IMT)

Este índice relaciona el coeficiente de compacidad de la cuenca, la pendiente media de la misma y la densidad de drenaje, los cuales son indicativos del comportamiento de la escorrentía, la velocidad y capacidad de arrastre de una cuenca, con el fin de inferir la susceptibilidad de la cuenca a eventos torrenciales (León, 2009).

Para el cálculo del índice, es necesario calcular el coeficiente de compacidad, la pendiente media de la cuenca y la densidad de drenaje de la misma, los cuales son relacionados en la siguiente matriz de evaluación, datos categorizados de acuerdo a la Tabla 76, en donde se muestran las relaciones para categorizar el índice morfométrico para cada cuenca de segundo nivel subsiguiente.

Índice		Área de la cuenca de	de				
morfométrico	Escala	drenaje (km2)	1	2	3	4	5
Densidad de drenaje	1:10.000	<15	<1,50	1,51 - 2,00	2,01 - 2,50	2,51 - 3,00	>3
(km/km2)	1:25.000	16 a 50	<1,20	1,21 - 1,80	1,81 - 2,00	2,01 - 2,50	>2,5
	1:100.000	>50	<1,00	1,01 - 1,50	1,51 - 2,00	2,01 - 2,50	>2,5
			Baja	Moderada	Moderada Alta	Alta	Muy Alta
Pendiente media de la	1:10.000	<15	<20	21 - 35	36 - 50	51 - 75	>75
cuenca (%)	1:100.000	>50	<15	16 - 30	30 - 45	46 - 65	>65
			Accidentado	Fuerte	Muy Fuerte	Escarpado	Muy Escarpado
Coeficiente de compacidad			<1,625	1,376 - 1,500	1,251 - 1,375	1,126 - 1,250	1,00 - 1,125
Table 70 for the con-		ta Disease	Oval - oblonga a rectangular - oblonga	Oval - redonda a		Casi redonda a	oval - redonda

Tabla 76. Índice morfométrico. Fuente. Rivas y Soto (2009) POMCA ALTO LEBRIJA

Para categorizar el índice morfométrico de torrencialidad en Muy Alta, Alta, Media, Baja y Muy Baja se presenta la Tabla 77 y Figura 58.

			PENDIENTE MEDIA DE LA CUENCA					
		1	2	3	4	5		
		111	121	131	141	151	1	
		112	122	132	142	152	2	
	1	113	123	133	143	153	3	
		114	124	134	144	154	4	
		115	125	135	145	155	5	
		211	221	231	241	251	1	
		212	222	232	242	252	2	
	2	213	223	233	243	253	3	
		214	224	234	244	254	4	
		215	225	235	245	255	5	
D		311	321	331	341	351	1	C
Densidad de Drenaje		312	322	332	342	352	2	Coeficiente de Forma
ad de	3	313	323	333	343	353	3	nte d
Dren		314	324	334	344	354	4	e For
aje		315	325	335	345	355	5	ma
		411	421	431	441	451	1	
		412	422	432	442	452	2	
	4	413	423	433	443	453	3	
		414	424	434	444	454	4	
		415	425	435	445	455	5	
		511	521	531	541	551	1	
		512	522	532	542	552	2	
	5	513	523	533	543	553	3	
		514	524	534	544	554	4	
		515	525	535	545	555	5	

Tabla 77. Categorías índices morfométrico de torrencialidad. Fuente. IDEAM, (2013)

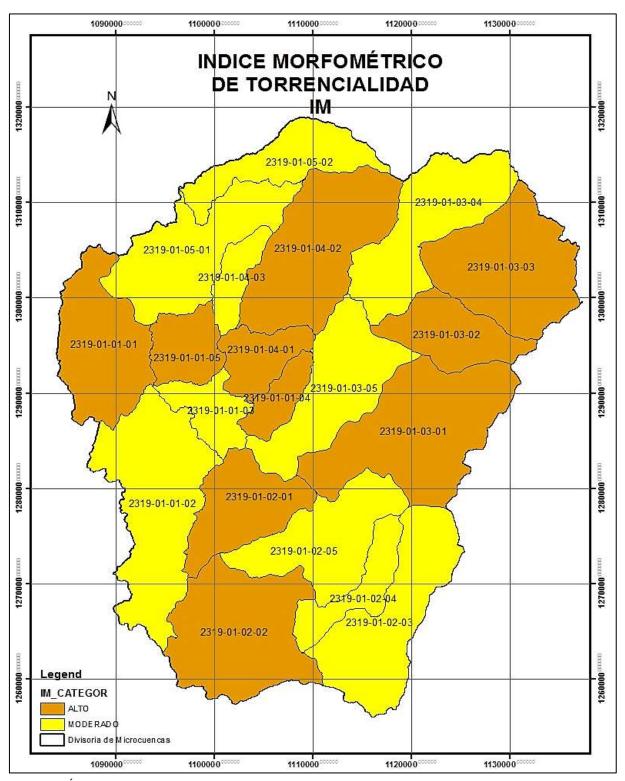


Figura 58. Índice morfométrico para la Cuenca Alto Lebrija. Fuente POMCA Alto Lebrija

7.8 Índice de variabilidad (IV)

La obtención del índice de variabilidad muestra el comportamiento de los caudales en una determinada cuenca definiendo una zona torrencial como aquella que presenta una mayor variabilidad, es decir, donde existen diferencias grandes entre los caudales mínimos que se presentan, y los valores máximos. (IDEAM, 2013). El índice de variabilidad se obtiene de la curva de duración de caudales con la siguiente ecuación:

Ecuación 45

$$IV = (Log (Qi)-Log (Qf))/(Log (Xi)-Log (Xf))$$

Donde Qi y Qf representan dos caudales tomados de la curva de duración de caudales y Xi y Xf los porcentajes de tiempo en que se exceden los caudales Qi y Qf, respectivamente.

Este índice se categoriza a partir de la matriz de calificación propuesta por el IDEAM Tabla 78 y se espacializa en la Figura 59.

Índice de Variabilidad	IV
< 10°	Muy Baja
10.1 ° – 37 °	Baja
37.1° – 47°	Media
47.1° – 55°	Alta
> 55 °	Muy Alta

Tabla 78. Índice de variabilidad. Fuente. IDEAM, 2013

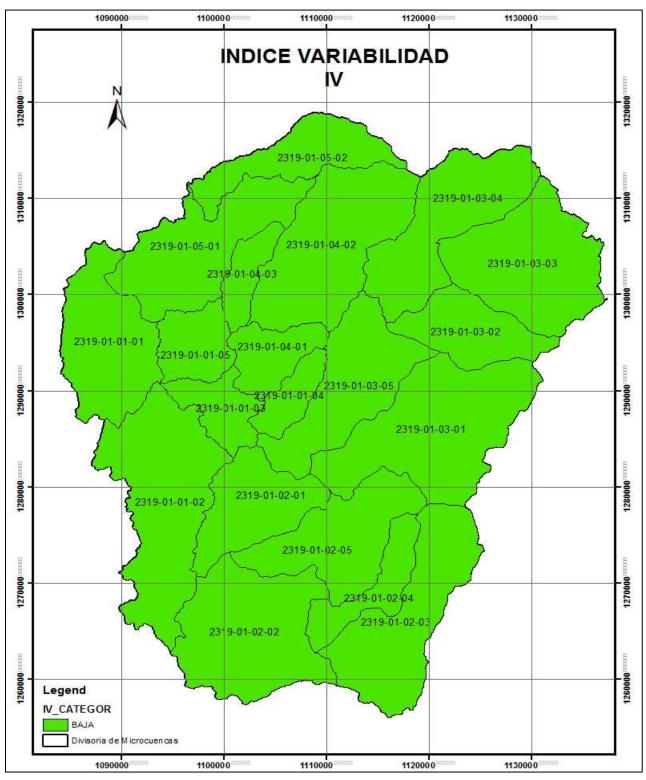


Figura 59. Categorización del índice de variabilidad. Fuente. POMCA Alto Lebrija

7.9 Índice de vulnerabilidad a eventos torrenciales (IVET)

Este índice representa el grado de susceptibilidad de una cuenca a presentar eventos torrenciales amenazantes, relacionando las características de la forma de la cuenca y las condiciones hidrológicas de dicha cuenca (IDEAM, 2013). El índice varía cualitativamente desde bajo a muy alto, y depende estrictamente entre una matriz de decisión entre el índice de variabilidad del drenaje y el índice morfométrico de torrencialidad.

	Índice Morfométrico de Torrencialidad				
Índice de Variabilidad	Muy bajo	Bajo	Medio	Alto	Muy alto
Muy bajo	Muy Bajo	Muy Bajo	Medio	Alto	Alto
Bajo	Baja	Medio	Medio	Alto	Muy Alto
Medio	Baja	Medio	Alto	Alto	Muy Alto
Alto	Media	Medio	Alto	Muy Alto	Muy Alto
Muy alto	Media	Alto	Alto	Muy Alto	Muy Alto

Tabla 79. Categorías IVET. Fuente. IDEAM, 2013

Este índice fue desarrollado a una escala 1:25.000, teniendo en cuenta los parámetros anteriormente explicados, para poder aplicar la matriz de evaluación establecida por el IDEAM.

El Índice de Vulnerabilidad a eventos torrenciales en donde se encuentran niveles de media a alta vulnerabilidad, se presenta en la Figura 60.

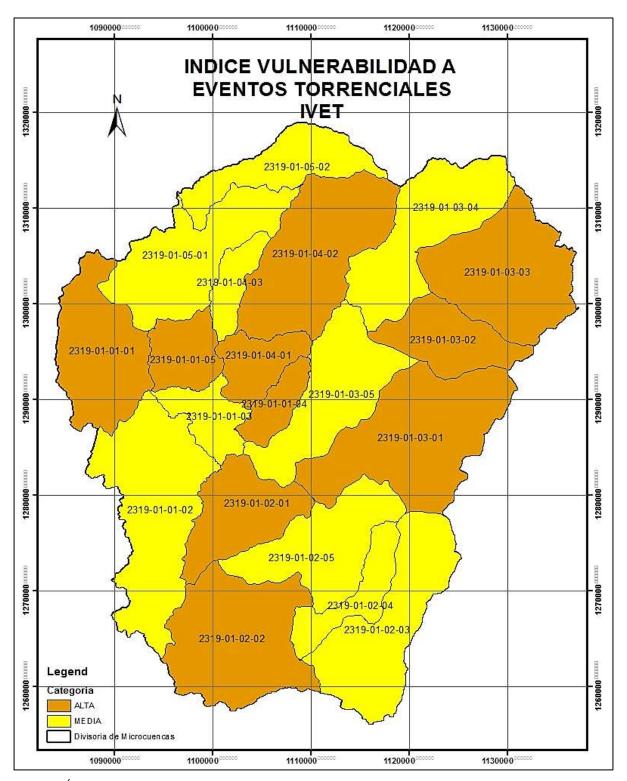


Figura 60. Índice de vulnerabilidad a eventos torrenciales (IVET). Fuente propia CDMB

7.10 Índice de alteración potencial de la calidad de agua (IACAL)

El recurso hídrico es vulnerable en cuanto a la afectación de su calidad, la cual se ve altamente afectada por la variabilidad climática. Ésta vulnerabilidad depende de la disponibilidad natural y/o regulada de dicho recurso, y de la presión ejercida sobre éste por cuenta de los usos y el consumo que realiza la población asentada en sus alrededores, así como los vertimientos que la población descarga en las corrientes.

Los valores calculados del indicador, se comparan con los establecidos en una tabla de interpretación, que permiten calificar la alteración potencial de la calidad del agua de forma descriptiva como de cierto nivel de presión (baja, moderada, media-alta, alta o muy alta); a su vez, están asociados a un determinado color (azul, verde, amarillo, naranja y rojo, respectivamente). La comparación temporal de la vulnerabilidad reflejada por la alteración potencial de la calidad del agua simplifica la interpretación, la identificación de tendencias y la toma de decisiones.

El valor del indicador surge de promediar el valor de las categorías de clasificación obtenidas para cada una de las variables. En la Tabla 80, se registran los rangos de los valores alternativos que puede tomar el IACAL, la categoría de clasificación que se le asigna a cada uno de ellos, la calificación del nivel de presión al que corresponde y el color que la representa:

Rangos IACAL	Categoría clasificación	Calificación de la presión
1,0 ≤ IACAL ≤ 1,5	1	Baja
1,5 < IACAL ≤ 2,5	2	Moderada
2,5 < IACAL ≤ 3,5	3	Media Alta
3,5 < IACAL ≤ 4,5	4	Alta
4,5 < IACAL ≤ 5	5	Muy alta

Tabla 80. Rango de valores que pueden tomar el IACAL. Fuente IDEAM

Recordando que el IACAL es la suma de los CATIACALES de los siguientes parámetros:

- Demanda Biológica de Oxigeno –DBO (ver Tabla 81)
- Demanda Química de Oxigeno -DQO (ver Tabla 82)
- Solidos Suspendidos Totales –SST (ver Tabla 83)
- Nitrógeno Total –NT (ver Tabla 84)
- Fosforo Total –PT (ver Tabla 85)

Rangos IACAL DBO	Categoría clasificación	Calificación de la presión
IACAL _{DBO} < 0,14	1	Baja
0,14 ≤ IACAL _{DBO} < 0,40	2	Moderada
0,40 ≤ IACAL _{DBO} < 1,21	3	Media Alta
1,21 ≤ IACAL _{DBO} < 4,86	4	Alta
IACAL _{DBO} ≥ 4,86	5	Muy alta

Tabla 81. Rangos de Valores que puede tomar el IACAL DBO. Fuente: (IDEAM, 2015)

Rangos IACAL DQO	Categoría clasificación	Calificación de la presión
IACAL _{DQO} < 0,14	1	Baja
0,14 ≤ IACAL _{DQO} < 0,36	2	Moderada
0,36 ≤ IACAL _{DQO} < 1,17	3	Media Alta
1,17 ≤ IACAL _{DQO} < 6,78	4	Alta
IACAL _{DQO} ≥ 6,78	5	Muy alta

Tabla 82. Rangos de Valores que puede tomar el IACAL DQO. Fuente: (IDEAM, 2015)

Rangos IACAL SST	Categoría clasificación	Calificación de la presión
IACAL _{SST} < 0,4	1	Baja
0,4 ≤ IACAL _{SST} < 0,8	2	Moderada
0,8 ≤ IACAL _{SST} < 1,9	3	Media Alta
1,9 ≤ IACAL _{SST} < 7,7	4	Alta
IACAL _{SST} ≥ 7,7	5	Muy alta

Tabla 83. Rangos de Valores que puede tomar el IACAL SST. Fuente: (IDEAM, 2015)

Rangos IACAL NT	Categoría clasificación	Calificación de la presión
IACAL _{NT} < 0,03	1	Baja
0,03 ≤ IACAL _{NT} < 0,06	2	Moderada
0,06 ≤ IACAL _{NT} < 1,14	3	Media Alta
1,14 ≤ IACAL _{NT} < 1,56	4	Alta
IACAL _{NT} ≥ 1,56	5	Muy alta

Tabla 84. Rangos de valores que puede tomar el IACALNT Fuente: (IDEAM, 2015)

Rangos IACAL PT	Categoría clasificación	Calificación de la presión
IACAL _{PT} < 0,005	1	Baja
0,005 ≤ IACAL _{PT} < 0,014	2	Moderada
0,014 ≤ IACAL _{PT} < 0,036	3	Media Alta
0,036 ≤ IACAL _{PT} < 0,135	4	Alta
IACAL _{PT} ≥ 0,135	5	Muy alta

Tabla 85. Rangos de Valores que puede tomar el IACALPT. Fuente: (IDEAM, 2015)

7.10.1 Análisis del índice de alteración potencial de la calidad de agua (IACAL)

En la Tabla 86, continuación se presenta la información obtenida a través de la determinación de cargas contaminantes para actividades de origen doméstico, pecuario, agrario, comercial industrial y minero para cuenca del rio Lebrija alto y los caudales definidos por el área e hidrología.

Dato	s generales		Oferta Hídrica Total m3/s (Año Normal)												
Microcuenca Nivel III	Código Microcuenca Nivel III	Área (Km2)	Q ener	Q feb	Q mar	Q abr	Q may	Q jun	Q jul	Q ago	Q sep	Q oct	Q nov	Q dic	Total
Directos Lebrija Alto	2319-01-01-01	123.90	0.815	2.657	4.142	6.181	5.963	3.003	1.539	3.215	5.140	9.255	6.053	1.424	49.388
Quebrada La Angula	2319-01-01-02	187.52	0.141	0.431	0.447	0.416	0.502	0.297	0.188	0.289	0.307	0.884	0.593	0.231	4.726
Quebrada Lajas	2319-01-01-03	44.52	0.011	0.016	0.085	0.192	0.139	0.043	0.017	0.062	0.142	0.220	0.151	0.030	1.108
Quebrada aburrido	2319-01-01-04	32.09	0.024	0.074	0.077	0.071	0.086	0.051	0.032	0.049	0.052	0.151	0.101	0.039	0.809
Quebrada La Honda	2319-01-01-05	50.45	0.038	0.116	0.120	0.112	0.135	0.080	0.051	0.078	0.082	0.238	0.160	0.062	1.271
Río de Oro Bajo	2319-01-02-01	91.73	0.224	1.134	1.191	0.893	1.347	1.004	0.434	0.824	1.037	1.945	1.194	0.200	11.426
Río de Oro Medio	2319-01-02-02	166.38	0.122	0.702	0.738	0.531	0.836	0.644	0.262	0.516	0.666	1.162	0.699	0.080	6.958
Río de Oro Alto	2319-01-02-03	145.44	0.039	0.273	0.288	0.195	0.326	0.263	0.098	0.204	0.272	0.430	0.251	0.008	2.648
Rio Hato	2319-01-02-04	50.81	0.038	0.117	0.121	0.113	0.136	0.080	0.051	0.078	0.083	0.240	0.161	0.062	1.280
Rio Frio	2319-01-02-05	118.38	0.032	0.222	0.234	0.159	0.266	0.214	0.080	0.166	0.221	0.350	0.204	0.007	2.155
Rio Tona	2319-01-03-01	194.79	0.006	0.032	0.103	0.388	0.406	0.296	0.234	0.295	0.388	0.479	0.227	0.010	2.865
Rio Charta	2319-01-03-02	76.60	0.018	0.028	0.146	0.331	0.239	0.074	0.029	0.107	0.245	0.379	0.260	0.051	1.906
Rio Vetas Río Surata	2319-01-03-03	157.04	0.037	0.057	0.299	0.678	0.489	0.152	0.059	0.219	0.502	0.776	0.534	0.105	3.908
Alto	2319-01-03-04	137.50	0.070	0.107	0.561	1.272	0.917	0.285	0.110	0.411	0.942	1.456	1.001	0.197	7.330
Rio Surata Bajo	2319-01-03-05	125.34	0.189	0.455	1.109	2.269	1.898	0.853	0.499	1.006	1.780	2.905	1.885	0.413	15.260
Río Negro Bajo	2319-01-04-01	47.989	0.060	0.091	0.480	1.087	0.784	0.243	0.094	0.351	0.806	1.244	0.856	0.169	6.266
Quebrada Santacruz	2319-01-04-02	171.09	0.041	0.062	0.326	0.739	0.533	0.165	0.064	0.239	0.547	0.846	0.582	0.115	4.258
Quebrada Samaca	2319-01-04-03	32.69	0.008	0.012	0.062	0.141	0.102	0.032	0.012	0.046	0.105	0.162	0.111	0.022	0.814
Río Salamaga	2319-01-05-01	136.51	0.035	0.055	0.338	0.867	0.740	0.237	0.100	0.365	0.731	1.083	0.721	0.129	5.400
Quebrada Silgara	2319-01-05-02	81.53	0.003	0.005	0.078	0.277	0.315	0.105	0.049	0.174	0.294	0.408	0.257	0.037	2.003

Tabla 86. Caudal de oferta hídrica total en m3/s para año normal. Fuente: Informe de hidrología- Fuente: Unión Temporal POMCA Río Lebrija Alto 2015.

7.10.2 IACAL año medio

Los resultados obtenidos por cada elemento para año medio, están registrados en las Tablas 87-91:

MICROCUENCA	IACAL DBO				
Nivel III	IACAL	CLASIFICACION	Calificación de presión		
Directos Lebrija Alto	1.78	4	ALTA		
Quebrada La Angula	33.20	5	MUY ALTA		
Quebrada Lajas	24.43	5	MUY ALTA		
Quebrada el aburrido	7.62	5	MUY ALTA		
Quebrada La Honda	6.42	5	MUY ALTA		
Río de Oro Bajo	8.33	5	MUY ALTA		
Río de Oro Medio	50.29	5	MUY ALTA		
Río de Oro Alto	48.85	5	MUY ALTA		
Rio Hato	37.00	5	MUY ALTA		
Rio Frio	62.21	5	MUY ALTA		
Rio Tona	4.75	4	ALTA		
Rio Charta	1.74	4	ALTA		
Rio Vetas	0.94	3	MEDIA-ALTA		
Río Surata Alto	0.60	3	MEDIA-ALTA		
Rio Surata Bajo	0.70	3	MEDIA-ALTA		
Río Negro Bajo	1.31	4	ALTA		
Quebrada Santacruz	2.42	4	ALTA		
Quebrada Samaca	6.79	5	MUY ALTA		
Río Salamaga	3.78	4	ALTA		
Quebrada Silgara	4.45	4	ALTA		

Tabla 87. Rangos de Valores del IACAL DBO Fuente: Unión Temporal POMCA Río Lebrija Alto 2015

MICROCUENCA	IACAL DQO-DBO				
Nivel III	IACAL	CLASIFICACION	Calificación de presión		
Directos Lebrija Alto	1.83	4	ALTA		
Quebrada La Angula	34.21	5	MUY ALTA		
Quebrada Lajas	23.97	5	MUY ALTA		
Quebrada el aburrido	7.70	5	MUY ALTA		
Quebrada La Honda	6.56	4	ALTA		
Río de Oro Bajo	9.86	5	MUY ALTA		
Río de Oro Medio	59.37	5	MUY ALTA		
Río de Oro Alto	50.00	5	MUY ALTA		
Rio Hato	25.57	5	MUY ALTA		
Rio Frio	66.21	5	MUY ALTA		
Rio Tona	6.20	4	ALTA		

MICROCUENCA	IACAL DQO-DBO				
Nivel III	IACAL	CLASIFICACION	Calificación de presión		
Rio Charta	1.82	4	ALTA		
Rio Vetas	0.98	3	MEDIA-ALTA		
Río Surata Alto	0.63	3	MEDIA-ALTA		
Rio Surata Bajo	0.71	3	MEDIA-ALTA		
Río Negro Bajo	1.35	4	ALTA		
Quebrada Santacruz	2.52	4	ALTA		
Quebrada Samaca	7.01	5	MUY ALTA		
Río Salamaga	3.83	4	ALTA		
Quebrada Silgara	4.44	4	ALTA		

Tabla 88. Rangos de Valores Del IACAL DQO-DBO Fuente: Unión Temporal POMCA Río Lebrija Alto 2015

MICROCUENCA		SST (ton/hm³)					
Nivel III	IACAL	CLASIFICACION	Calificación de presión				
Directos Lebrija Alto	15.99	5	MUY ALTA				
Quebrada La Angula	297.44	5	MUY ALTA				
Quebrada Lajas	202.30	5	MUY ALTA				
Quebrada el aburrido	48.46	5	MUY ALTA				
Quebrada La Honda	25.53	5	MUY ALTA				
Río de Oro Bajo	28.70	5	MUY ALTA				
Río de Oro Medio	168.06	5	MUY ALTA				
Río de Oro Alto	390.96	5	MUY ALTA				
Rio Hato	284.76	5	MUY ALTA				
Rio Frio	463.91	5	MUY ALTA				
Rio Tona	17.41	5	MUY ALTA				
Rio Charta	4.80	4	ALTA				
Rio Vetas	2.16	4	ALTA				
Río Suratá Alto	1.41	3	MEDIA-ALTA				
Rio Surata Bajo	3.81	4	ALTA				
Río Negro Bajo	5.04	4	ALTA				
Quebrada Santacruz	8.47	5	MUY ALTA				
Quebrada Samaca	26.10	5	MUY ALTA				
Río Salamaga	15.42	5	MUY ALTA				
Quebrada Silgara	18.61	5	MUY ALTA				

Tabla 89. Rangos de valores del IACAL SST. Fuente: Unión Temporal POMCA Río Lebrija Alto 2015

MICROCUENCA Nivel I II	N ton/hm³					
	IACAL	CLASIFICACION	Calificación de presión			
Directos Lebrija Alto	0.61	3	MEDIA ALTA			
Quebrada La Angula	13.50	5	MUY ALTA			
Quebrada Lajas	9.25	5	MUY ALTA			
Quebrada el aburrido	2.43	5	MUY ALTA			
Quebrada La Honda	2.33	5	MUY ALTA			
Río de Oro Bajo	1.97	5	MUY ALTA			
Río de Oro Medio	12.10	5	MUY ALTA			
Río de Oro Alto	16.12	5	MUY ALTA			
Rio Hato	11.09	5	MUY ALTA			
Rio Frio	21.08	5	MUY ALTA			
Rio Tona	1.79	5	MUY ALTA			
Rio Charta	0.78	3	MEDIA ALTA			
Rio Vetas	0.26	3	MEDIA ALTA			
Río Surata Alto	0.32	3	MEDIA ALTA			
Rio Surata Bajo	0.41	3	MEDIA ALTA			
Río Negro Bajo	0.40	3	MEDIA ALTA			
Quebrada Santacruz	0.56	3	MEDIA ALTA			
Quebrada Samaca	1.32	4	ALTA			
Río Salamaga	0.82	3	MEDIA ALTA			
Quebrada Silgara	1.27	4	ALTA			

Tabla 90. Rangos de valores del IACAL NT. Fuente: Unión Temporal POMCA Río Lebrija Alto 2015

MICROCUENCA Nivel I II	Fosforo Total -P ton/hm³					
	IACAL	CLASIFICACION	Calificación de presión			
Directos Lebrija Alto	0.01	2	MODERADA			
Quebrada La Angula	0.39	5	MUY ALTA			
Quebrada Lajas	0.27	5	MUY ALTA			
Quebrada el aburrido	0.15	5	MUY ALTA			
Quebrada La Honda	0.20	5	MUY ALTA			
Río de Oro Bajo	0.25	5	MUY ALTA			
Río de Oro Medio	1.39	5	MUY ALTA			
Río de Oro Alto	0.49	5	MUY ALTA			
Rio Hato	0.32	5	MUY ALTA			
Rio Frio	1.04	5	MUY ALTA			
Rio Tona	0.16	5	MUY ALTA			

MICROCUENCA Nivel I II	Fosforo Total -P ton/hm³				
	IACAL	CLASIFICACION	Calificación de presión		
Rio Charta	0.08	4	ALTA		
Rio Vetas	0.04	4	ALTA		
Río Surata Alto	0.04	3	MEDIA ALTA		
Rio Surata Bajo	0.03	3	MEDIA ALTA		
Río Negro Bajo	0.03	3	MEDIA ALTA		
Quebrada Santacruz	0.06	4	ALTA		
Quebrada Samaca	0.12	4	ALTA		
Río Salamaga	0.07	4	ALTA		
Quebrada Silgara	0.09	4	ALTA		

Tabla 91. Rangos de valores del IACAL PT. Fuente: Unión Temporal POMCA Río Lebrija Alto 2015

El IACAL para época media se aprecia en la Tablas 92:

MICROCUENCA Nivel III	ponderación total	clasificación
Directos Lebrija Alto	3.6	ALTA
Quebrada La Angula	5	MUY ALTA
Quebrada Lajas	5	MUY ALTA
Quebrada el aburrido	5	MUY ALTA
Quebrada La Honda	4.8	MUY ALTA
Río de Oro Bajo	5	MUY ALTA
Río de Oro Medio	5	MUY ALTA
Río de Oro Alto	5	MUY ALTA
Rio Hato	5	MUY ALTA
Rio Frio	5	MUY ALTA
Rio Tona	4.6	MUY ALTA
Rio Charta	3.8	ALTA
Rio Vetas	3.4	MEDIA ALTA
Río Surata Alto	3	MEDIA ALTA
Rio Surata Bajo	3.2	MEDIA ALTA
Río Negro Bajo	3.6	ALTA
Quebrada Santacruz	4	ALTA
Quebrada Samaca	4.6	MUY ALTA
Río Salamaga	4	ALTA
Quebrada Silgara	4.2	ALTA L BOMOA BY

Tabla 92. Rangos de valores del IACAL. Total de la cuenca media normal Fuente: Unión Temporal POMCA Río Lebrija Alto 2015

En la Figura 61, se observa el IACAL en época media normal

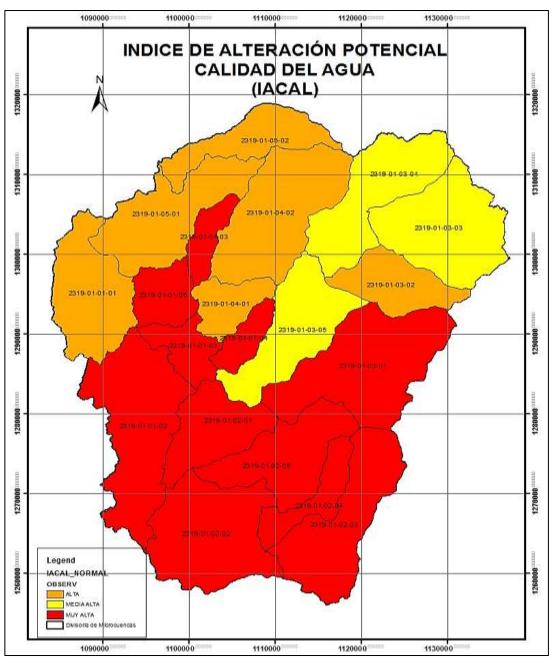
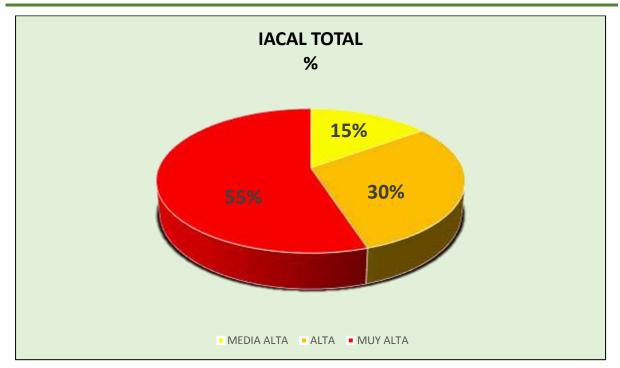


Figura 61. Gráfica del IACAL total de la cuenca. Fuente: CDMB. - Unión Temporal POMCA Río Lebrija Alto 2015

El IACAL calculado para condición hidrológica de año normal muestra un comportamiento potencial para la DBO muy alto para las microcuencas Nivel III La Angula, Las Lajas, El Aburrido, La Honda, Rio de Oro Bajo, Rio de Oro Medio y Rio de Oro Alto, Rio Hato, Rio Frio y Quebrada Samacá, que obedece principalmente a la

presencia de área urbanas y centros poblados, así como la actividad agropecuaria y algunos tipos de industria: las microcuencas Nivel III Directos Lebrija Alto, rio Tona, rio Charta, Rionegro Bajo, Q. Santa Cruz, rio Salamaga y Silgara, presenta una probabilidad de presión alta, la cual se origina por las cargas agropecuarias presentes en la zona y la población dispersa asentada en ellas.

Se observa que el comportamiento de la relación DQO-DBO es similar al IACAL de la DBO debido a que la cuenca no cuenta con actividad industrial de gran impacto.


La alteración potencial a la calidad del agua debido a la carga contaminante de sólidos suspendidos en las fuentes superficiales del área de estudio, presentan una calificación muy alta, a excepción de la microcuenca de Surata Alto que presenta un valor medio alto, y las microcuencas Rio Charta, Rio Vetas, Surata Bajo y Rionegro Bajo que presentan un nivel alto. Este cambio puede presentarse por una disminución de la actividad humana, y agropecuaria.

Con relación a los índices de nutrientes, como el fosforo total, se observa una alteración potencial muy alta en varias microcuencas, lo que significa que esta variable está pasando de ser un nutriente a convertirse en un contaminante, situación que no favorece las fuentes superficiales.

En el caso del nitrógeno total, en varias microcuencas se presenta una alteración muy alta, lo cual no es beneficioso ya que potencialmente puede favorecer la eutrofización, alteración negativa para mantener la calidad de la fuente.

Por otra parte, observando a partir del promedio de las jerarquías asignadas a las cargas contaminantes de materia orgánica, sólidos suspendidos y nutrientes se tiene que el IACAL de la cuenca del rio Lebrija alto en condiciones media normal es muy alto para el 55 % de la cuenca y alto para 30 % y 15 % medio alto de la cuenca; situación que puede apreciarse en la gráfica circular 57.

Gráfica 57. Representación circular del IACAL total de la cuenca Fuente: Unión Temporal POMCA Río Lebrija Alto. 2015

En condiciones de año hidrológico seco los indicadores de IACAL para DBO, DQO-DBO, SST, N y P al igual que el valor ponderado sufren un deterioro en su calificación debido a los caudales muy bajos de dilución.

7.11 Índice de calidad de agua (ICA)

El concepto de calidad del agua que se plantea, apropia la definición de la Directiva Europea Marco del Agua, que asume que es necesario proteger un cuerpo de agua más como un bien ambiental que como un recurso para ser explotado y que no pretende una caracterización en función del uso (IDEAM, 2010).

Con relación al índice de calidad del agua, es el valor numérico que califica en una de cinco categorías, la calidad del agua de una corriente superficial, con base en las mediciones obtenidas para un conjunto variables, registradas en una red de monitoreo. Este indicador permite conocer las condiciones de calidad físico-química y

microbiológica de un cuerpo de agua, e identifica problemas de contaminación en un punto determinado.

La Corporación Autónoma Regional CDMB desde el año 1999 ha venido realizando el cálculo de índice de calidad de agua (desarrollado por la National Sanitation Foundation) a partir de 9 parámetros que son el Oxígeno Disuelto, Demanda Bioquímica de Oxígeno, Nitrógeno Total, Fósforo Total, Sólidos Totales, Turbiedad, Coliformes Fecales, PH y Temperatura.

Datos que fueron tabulados desde el año 2000 a 2015, con el fin de ver su comportamiento histórico a través del tiempo en los puntos de monitoreo definidos por la CDMB como se observa Figura 62.

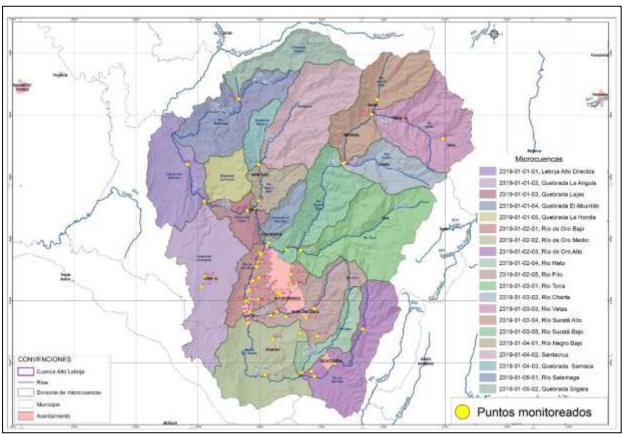


Figura 62. Puntos de Monitoreo ICA

7.11.1 Metodología del cálculo ICA

El índice de Calidad del Agua ICA es calculado como la multiplicación de todos los nueve parámetros como se desglosa en la página 54. En la Tabla 93, se muestran los descriptores de las variables simplificadas en el ICA.

El ICA toma valores entre 0 y 100, los valores más bajos indican una peor calidad y mayores limitaciones para el uso del agua. La aplicación de ICA se utiliza como una herramienta para determinar el estado de las cuencas de la región en un tiempo determinado y con su análisis se puede evaluar las restricciones en los usos definidos en cada tramo de una corriente. (CDMB-2000).

Categorías de valores que puede tomar el indicador	Calificación de la calidad del agua	Señal de alerta
0,00 – 19,0	Pésima	Rojo
20,0 – 36,0	Inadecuada	Naranja
37,0 – 51,0	Dudosa	Amarillo
52,0 – 79,0	Buena	Verde
80,0 – 100,0	Optima	Azul

Tabla 93. Descriptores de la Calidad del ICA Fuente: CDMB-2000

7.11.2 Índice de calidad promedio

Teniendo en cuenta que la información generada por la CDMB, en lo referente al cálculo del índice de calidad el agua – ICA, se encuentra ponderada por año, no es factible calcular el ICA en condiciones secas y húmedas de acuerdo a la metodología de la IDEAM; se cuenta con un ponderado anual por fuente y subcuenca Nivel II durante el periodo de cálculo, así como se mostró en la graficas anteriores y se resumen en la siguiente tabla:

Sitio de Muestreo	Punto de Monitoreo	Subcuenca Nivel II	Microcuenca-Nivel	Promedio	Calificación
	SA -07	RIO SURATÁ	SURATÁ ALTO	70,9	Buena
	SA -06	RIO SURATÁ	SURATÁ ALTO	61,1	Buena
Río Surata	SA -05	RIO SURATÁ	SURATÁ ALTO	54,2	Buena
	SA-03	RIO SURATÁ	SURATÁ BAJO	55,7	Buena
	SA-01	RIO SURATÁ	SURATÁ BAJO	38,3	Dudosa
	RO-06	RIO DE ORO	ORO ALTO	71,3	Buena
	RO-05	RIO DE ORO	ORO ALTO	63,4	Buena
D(- d- O	RO-04	RIO DE ORO	ORO MEDIO	44,9	Dudosa
Río de Oro	RO-4A	RIO DE ORO	ORO MEDIO	44,9	Dudosa
	RO-02	RIO DE ORO	ORO BAJO	24,4	Inadecuada
	RO-01	RIO DE ORO	ORO BAJO	29,4	Inadecuada
Q. Grande	QG-01	RIO DE ORO	ORO ALTO	56,3	Buena
Q. Soratoque	SO-01	RIO DE ORO	ORO ALTO	12,6	Pesima
Río Lato	LT01	RIO DE ORO	HATO	50,8	Dudosa
	RF-03	RIO DE ORO	RIO FRIO	69,1	Buena
D' E'	RF-P	RIO DE ORO	RIO FRIO	47,3	Dudosa
Río Frío	RF-B	RIO DE ORO	RIO FRIO	16,2	Pesima
	RF-1A	RIO DE ORO	RIO FRIO	19,4	Pesima
	MS-05	RIO DE ORO	RIO FRIO	56,9	Buena
Q. Aranzoque - Menzulí	AZ-07	RIO DE ORO	RIO FRIO	48,4	Dudosa
Menzun	AZ-1A	RIO DE ORO	RIO FRIO	53,1	Buena
Q. zapamanga	ZA-01	RIO DE ORO	RIO FRIO	49,7	Dudosa
Q. La Flora	LF-01	RIO DE ORO	ORO BAJO	41,9	Dudosa
Q. La Cascada	CS-01	RIO DE ORO	ORO BAJO	41,3	Dudosa
O La Islania	LI-03	RIO DE ORO	ORO BAJO	18,7	Pesima
Q. La Iglesia	LI-01	RIO DE ORO	ORO BAJO	21,5	Inadecuada
Q. El Macho	MA-01	RIO DE ORO	ORO BAJO	20,9	Inadecuada
Q. La Guacamaya	GY-01	RIO DE ORO	ORO BAJO	22,2	Inadecuada
Q. El Carrasco	DC-01	RIO DE ORO	ORO BAJO	9,7	Pesima
Q. Chimita	CA-01	RIO DE ORO	ORO BAJO	20	Inadecuada
Q. La Cuyamita	CY-01	RIO DE ORO	ORO BAJO	28,7	Inadecuada
Q. La Argelia	AR-01	RIO DE ORO	ORO BAJO	40,9	Dudosa
Q. Las Navas	LN-01	RIO DE ORO	ORO BAJO	24,3	Inadecuada
Q. Chapinero	CH-01	RIO DE ORO	ORO BAJO	27,9	Inadecuada
Q. La Picha	LP-01	RIO DE ORO	ORO BAJO	17,5	Pesima
	RL-02	LEBRIJA ALTO	EL ABURRIDO	36,6	Inadecuada
Río Lebrija	RL-03	LEBRIJA ALTO	LAS LAJAS	42	Dudosa
	RL-07	LEBRIJA ALTO	ALTOS DIRECTOS	42,5	Dudosa
Río Negro	RN-01	RÍO NEGRO	RIO NEGRO BAJO	53,2	Buena
	LA-04	LEBRIJA ALTO	LA ANGULA	63,8	Buena
	•				

Sitio de Muestreo	Punto de Monitoreo	Subcuenca Nivel II	Microcuenca-Nivel III	Promedio	Calificación	
Quebrada La	LA-03	LEBRIJA ALTO	LA ANGULA	18,7	Pesima	
Angula	LA-01	LEBRIJA ALTO	LA HONDA	62,9	Buena	
Río Vetas	RV-01	RIO SURATÁ	SURATÁ ALTO	53,4	Buena	
	RV-02	RIO SURATÁ	VETAS	56	Buena	
	QLB-01	RIO SURATÁ	VETAS	60,04	Buena	
	RV-05	RIO SURATÁ	VETAS	51,2	Dudosa	
Río Tona	RT-01	RIO SURATÁ	TONA	61,2	Buena	
Río Charta	RCH-01	RIO SURATÁ	CHARTA	62,8	Buena	
La Ruitoca	LR-03	RIO DE ORO	ORO MEDIO	65	Buena	
La Ruitoca	LR- 02	RIO DE ORO	ORO MEDIO	57,2	Buena	
Quebrada Samaca	SM-01	RÍO NEGRO	SAMACA	66,2	Buena	
Quebrada Santa Cruz	SC- 01	RÍO NEGRO	SANTA CRUZ	65	Buena	
Río Salamaga	SL-04	SALAMAGA	SALAMAGA	70,3	Buena	
Río Silgará	SG- 01A SALAMAG		SILGARA	59,6	Buena	

Tabla 94. Índice de Calidad Promedio

En la Figura 63, se muestra el ICA promedio para los diferentes tramos de monitoreo.

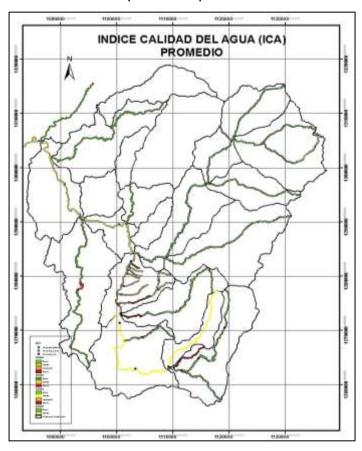
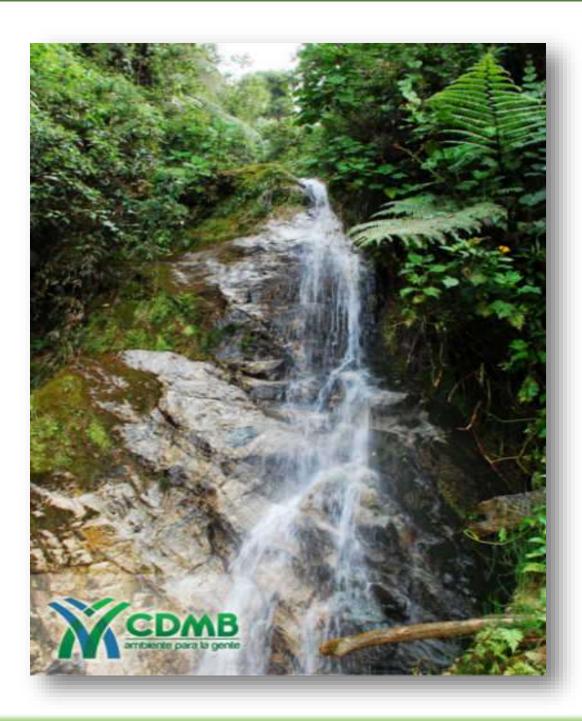



Figura 63 Comportamiento promedio multianual del ICA en la cuenca por punto de monitoreo.

SECCIÓN H

CAPITULO 8. ANÁLISIS INTEGRAL DE LA CUENCA ALTO LEBRIJA

Para realizar el análisis integrado de la cuenca, se siguió la metodología propuesta por la CAR para la Evaluación Regional del Agua-CDMB, en la Cuenca Alta del Río Bogotá, ya que permite conocer la disponibilidad del agua en la cuenca mediante el desarrollo de los diferentes indicadores para determinar el grado de disponibilidad, calidad y riesgo del recurso hídrico.

La metodología consiste en dar un puntaje de acuerdo a la criticidad de cada indicador, representando con color rojo la situación más crítica y por lo tanto un nivel de importancia de 5 y en color azul la situación más favorable con grado de importancia de 1.

Se realiza la calificación y sumatoria de cada calificación de los indicadores y se promedia por el número de indicadores. Las categorías de criticidad se presentan a continuación en la Tabla 95.

CATEGORIA DE CRITICIDAD INTEGRAL							
RANGO	COLOR						
MAYOR A 4,5		MUY ALTO					
3,6 - 4,5		ALTO					
2,6 - 3,5		MEDIO					
1,6 - 2,5		BAJO					
MENOR A 1,5		MUY BAJO					

Tabla 95. Categoría de criticidad integral

Los indicadores que se tuvieron en cuenta para el análisis integral a escala anual con condición de año normal son: Índice de Aridez (IA), Índice de Regulación Hídrica (IRH), Índice de Uso de Agua (IUA), Índice de Vulnerabilidad al Desabastecimiento Hídrico

(IVH), Índice de Calidad del Agua (ICA), Índice de Alteración Potencial de la calidad del Agua (IACAL) y el Índice de Vulnerabilidad a Eventos Torrenciales (IVET).

Un resumen de los indicadores por microcuenca y la valoración de la criticidad son presentados en la Tabla 96.

CODIGO	MICROCUENCA	IA	IRH	IUA	IVH	ICA	IACAL	IVET	TOTAL	PROM.	CALIFICACION
2319-01-03-01	TONA	2	1	5	3	2	5	4	22	3.14	MEDIO
2319-01-03-02	CHARTA	1	1	2	2	2	4	4	16	2.29	BAJO
2319-01-03-03	VETAS	1	1	2	2	2	3	4	15	2.14	BAJO
2319-01-03-04	SURATA ALTO	1	1	1	1	2	3	3	12	1.71	BAJO
2319-01-03-05	SURATA BAJO	1	1	4	3	3	3	3	18	2.57	MEDIO
2319-01-02-01	ORO BAJO	1	1	1	1	4	5	4	17	2.43	BAJO
2319-01-02-02	ORO MEDIO	1	1	2	2	3	5	4	18	2.57	MEDIO
2319-01-02-03	ORO ALTO	2	1	4	3	2	5	3	20	2.86	MEDIO
2319-01-02-04	НАТО	2	1	5	3	3	5	3	22	3.14	MEDIO
2319-01-02-05	RIO FRIO	1	1	4	3	5	5	3	22	3.14	MEDIO
2319-01-01-01	DIRECTOS LEBRIJA	1	1	1	1	3	4	4	15	2.14	BAJO
2319-01-01-02	ANGULA	1	1	2	2	2	5	3	16	2.29	BAJO
2319-01-01-03	LAJAS	1	1	2	2	2	5	3	16	2.29	BAJO
2319-01-01-04	ABURRIDO	1	1	3	3	3	5	4	20	2.86	MEDIO
2319-01-01-05	HONDA	1	1	2	2	2	5	4	17	2.43	BAJO
2319-01-04-01	RIONEGRO	1	1	1	1	2	4	4	14	2.00	BAJO
2319-01-04-02	SANTACRUZ	2	1	1	1	2	4	4	15	2.14	BAJO
2319-01-04-03	SAMACA	2	1	2	2	2	5	3	17	2.43	BAJO
2319-01-05-01	SALAMAGA	2	1	1	1	2	4	3	14	2.00	BAJO
2319-01-05-02	SILGARA	2	1	1	1	2	4	3	14	2.00	BAJO

Tabla 96 Evaluación integral de la Cuenca Alto Lebrija

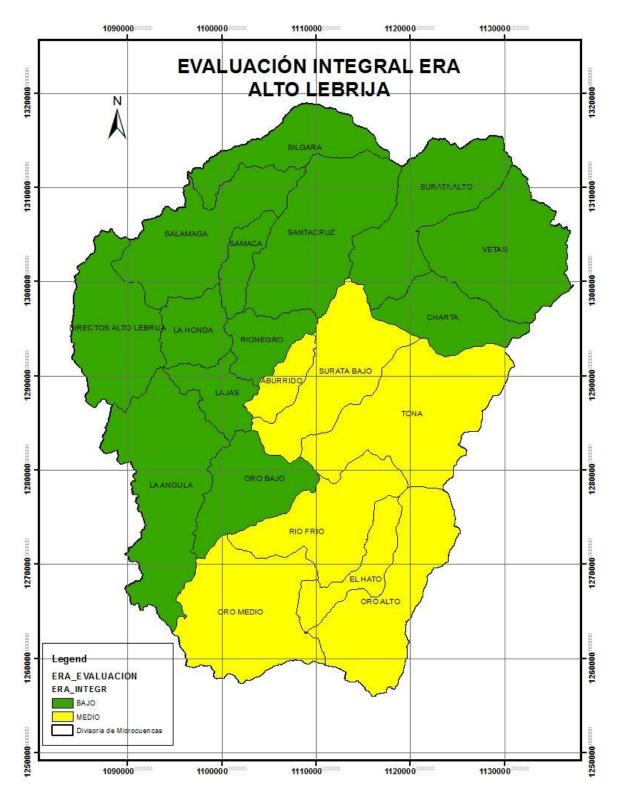
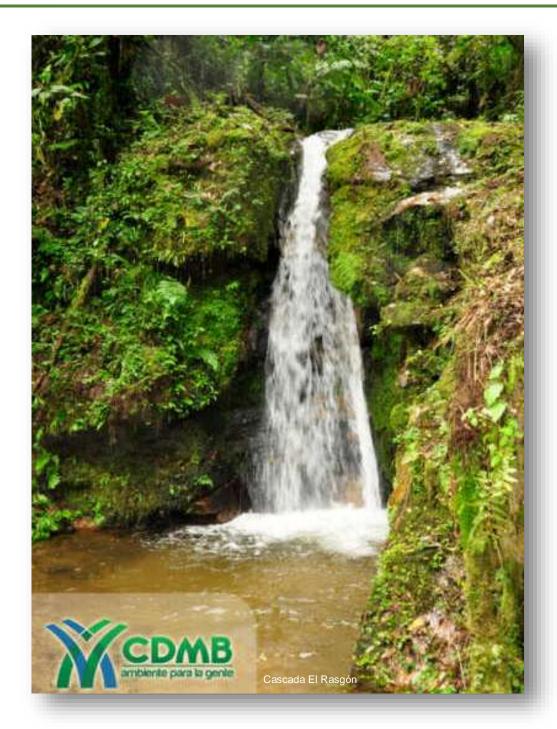



Figura 64. Evaluación integral ERA cuenca Alto Lebrija

SECCIÓN I

CAPITULO 9. CONCLUSIONES

- 1. El Índice de Aridez (la) de la cuenca Alto Lebrija fluctúa entre 0.12 y 0.20. En la parte baja de la cuenca se encuentra altos Excedentes de agua; La parte media de Rio de Oro y Surata alto se encuentra con excedentes de agua; Los valores de Moderados a excedentes de agua se ubican en la parte alta de rio de Oro, Tona, Salamaga y la parte alta de Rionegro. En conclusión no existe riesgo de aridez en la cuenca
- 2. La variación del Índice de Aridez (la) a lo largo del año evidencia la distribución bimodal de la precipitación, con valores de excedentes y altos excedentes de agua para los meses de marzo a junio y de agosto a noviembre. En los meses de diciembre a febrero y en julio se observan valores de moderados a deficitarios de agua.
- 3. Dentro de la cuenca Nivel I Alto Lebrija, solo se encuentran tres estaciones hidrológicas con series de caudales lo suficientemente extensas para el cálculo del Índice de Retención Hídrica (IRH). El indicador calculado para estas estaciones, dio como resultado que las cuencas aferentes Nivel III, tienen Muy alta capacidad para retener y regular caudales. La cuenca aferente Nivel III, a la estación Puente Pánaga es Río Vetas. Para la estación Sardinas, la cuenca aferente Nivel III corresponde a Santacruz. La estación Conquistador se ubica en la cuenca Nivel III Oro Alto.
- 4. Los valores del Índice de Retención Hídrica (IRH) para cada una de las cuencas Nivel III en la Cuenca Nivel I Alto Lebrija, se calculó mediante la generación de caudales modelos de lluvia-escorrentía debido a que en el área de estudio no se cuentan con suficientes estaciones hidrológicas. Si bien es cierto que los volúmenes bajo la curva gastos generados con modelos lluvia –escorrentía son inferiores a los registrados con las estaciones hidrológicas, los valores del indicador

presentan resultados similares, razón por lo cual se calculó para todas las cuencas de Nivel III el valor del indicador IRH, con las curvas de duración de caudales.

- 5. Los valores del Índice de Retención Hídrica (IRH) en la cuenca Alto Lebrija Nivel I, reportó valores de Muy Alta capacidad para retener y regular caudales
- 6. El Índice de Uso de Agua (IUA) presenta para el comportamiento hidrológico normal, niveles muy altos de presión de la demanda con respecto a la oferta disponible en las cuencas Nivel III del rio Tona y Rio Hato; y para las cuencas Nivel III, Surata Bajo, Rio Frío y Oro Alto, niveles altos de presión de la demanda con respecto a la oferta disponible. Lo anterior obedece principalmente a que en estas cuencas se ubican las captaciones para el abastecimiento del área metropolitana de Bucaramanga tanto para consumo humano como industrial.
- 7. Para la condición hidrológica de año seco, los valores del Índice de Uso de Agua (IUA) para las cuencas Nivel III, Surata Bajo, Rio Frio y Rio de Oro Alto pasan a muy alta presión de la demanda con respecto a la oferta, al igual que la quebrada El Aburrido que pasa a esta categoría con respecto al año normal. Es importante resaltar que para las cuencas Nivel III, Quebrada La Angula, La Honda, Oro Medio, Charta y Vetas reportan valores de alta presión de la demanda sobre la oferta disponible.
- 8. El Índice de Vulnerabilidad por abastecimiento hídrico (IVH) nos está indicando que, para las condiciones de año hidrológico normal las cuencas Nivel III, El Aburrido, Oro Alto, Rio Hato, Rio Frio, Tona y Surata Bajo presentan niveles de media fragilidad para mantener una oferta de abastecimiento de agua. Así mismo, para año hidrológico de condiciones secas se adicionan a esta categoría las cuencas Nivel III, La Angula, La Honda, Oro Medio, Charta, Vetas, Surata Bajo y Samaca.

- 9. El Índice Morfométrico de Torrencialidad (IMT), que expresa el comportamiento de la escorrentía, la velocidad y capacidad de arrastre de una cuenca para inferir la susceptibilidad a eventos torrenciales, presenta niveles altos, para las cuencas de Nivel III, Vetas, Charta, Tona, Oro Medio, Oro Bajo, Santacruz, Rionegro, El Aburrido, La Honda y Directos Lebrija Alto. Para las demás microcuencas Nivel III su calificación es de Media.
- 10. El Índice de variabilidad (IV) que muestra la deferencia de los caudales mínimos y máximos, indica un nivel bajo para los caudales generados en cada una de las microcuencas Nivel III.
- 11. Por lo anterior, el Índice de Vulnerabilidad a Eventos Torrenciales (IVET) presenta un comportamiento similar al Índice Morfométrico con valores altos para las microcuencas Vetas, Charta, Tona, Oro Medio, Oro Bajo, Santacruz, Rionegro, El Aburrido, La Honda y Directos Lebrija Alto. Las demás microcuencas Nivel III presentan valores medios de Vulnerabilidad.
- 12. El Índice de Alteración Potencial de Calidad del Agua (IACAL) calculado para condición hidrológica de año normal muestra un comportamiento potencial para la DBO muy alto para las microcuencas Nivel III, La Angula, Las Lajas, El Aburrido, La Honda, Rio de Oro Bajo, Rio de Oro Medio y Rio de Oro Alto, Rio Hato, Rio Frio y Quebrada Samaca, lo que obedece principalmente a la presencia de área urbanas y centros poblados, así como la actividad pecuaria y algunos tipos de industria: las microcuencas Nivel III, Directos Lebrija Alto, rio Tona, rio Charta, Rionegro Bajo, Q. Santa Cruz, rio Salamaga y Silgara, presenta una probabilidad de presión alta, la cual se origina por las cargas pecuarias presentes en la zona y la población dispersa asentada en ellas.
- 13. En condiciones de año hidrológico seco los indicadores de IACAL para DBO, DQO-DBO, SST, N y P al igual que el valor ponderado sufren un deterioro en su calificación debido a los caudales muy bajos de dilución.

- 14. Con respecto a los índices de nutrientes, como por ejemplo el fosforo total, se observa una alteración potencial muy alta en varias microcuencas Nivel III, lo que significa que esta variable está pasando de ser un nutriente y convertirse en un contaminante, situación que no favorece las fuentes superficiales.
- 15. Con respecto al nitrógeno total, en varias microcuencas Nivel III se presenta una alteración muy alta, lo cual no es beneficioso especialmente teniendo en cuenta las condiciones ambientales provocadas por el cambio climático en proceso, que acentúan los procesos de toxicidad como efecto de disminución de la dilución en las zonas de menos pluviosidad, además de una mayor incidencia de procesos de eutrofización y mayor proliferación de algas tóxicas

16. Con relación al Índice de calidad del Agua (ICA)

El Índice de Calidad ICA promedio, presenta una calificación Buena en las unidades hidrológicas Nivel III Surata Alto, desde el punto Uña de gato hasta Zaragoza, al igual que en Nivel III Oro Alto en el tramo comprendido entre el Rasgón y el Conquistador y la zona de barro blanco.

Asimismo, para Nivel III Río Frío, aguas arriba de la Finca la Esperanza (Floridablanca), y en la zona Platacero de la Quebrada Aranzoque (Mensuly Piedecuesta) se estableció índice de Buena calidad. De igual forma, se determinó Buena calidad para Nivel III Rio Negro Bajo, en la zona de brisas y sobre la Quebrada La Angula aguas arriba del Pico del Águila, y abajo en Palmas sobre la Quebrada La Angula.

Del mismo modo, en la unidad hidrológica Nivel III Vetas, la calidad es buena desde Loma Redonda hasta Puente Pánaga. De la misma manera, en las unidades

hidrológicas nivel III, Tona, Charta, la Ruitoca, Samaca, Santa Cruz, Salamaga y Silgara se obtuvieron índices de buena calidad.

El índice de calidad dudosa se obtuvo en las unidades hidrológicas Nivel III de Surata Bajo en la zona de Bavaria, y el tramo comprendido entre Palogordo y Bahondo en Nivel III Oro Medio. De igual forma en nivel III Hato es dudosa en la parte de la batea. En Rio Frío es calidad dudosa El Pórtico, Campestre (Zapamanga) y autopista (Aranzoque). También las zonas Oro Bajo (Quebrada La Flora punto El Jardín, Quebrada La Cascada punto La Floresta, y Quebrada Argelia). Sobre las unidades hidrológicas nivel III, Las Lajas, Altos Directos y Vetas también se obtuvieron calidades dudosas en los puntos Embalse (río Lebrija), El Conchal (río Lebrija) y Borrero (rio Vetas).

La calidad inadecuada, se determinó en la unidad hidrológica Oro Bajo, en los puntos El Carrizal, Puente Nariño sobre el rio Oro, Puente Sena en la Quebrada La Iglesia, Coca Cola en la Quebrada El Macho y Quebrada Guacamaya, Chimita sobre la Quebrada Chimita, Parque Industrial Quebrada La Cuyamita, antes de la confluencia con el rio Oro en la Quebrada Las Navas, antes de la confluencia con el rio Oro en la Quebrada Chapinero y en la unidad Nivel III, en Bocas (río Lebrija).

Finalmente, se obtuvo calidad Pésima en la microcuenca nivel III, Oro alto, específicamente en las zonas aguas abajo, antes de la confluencia de la Quebrada Soratoque con el Rio Oro. Así mismo para nivel III Río Frío, en el Caucho antes de la confluencia con la Quebrada Aranzoque, y en Caneyes antes de la confluencia con el Río Oro. De igual forma, para nivel III Oro Bajo, la calidad es pésima en San Luis (Quebrada La Iglesia) después del vertimiento de la estructura de alcantarillado del barrio San Luis, en Cenfer (Q. Carrasco) antes de la confluencia con la Quebrada La Iglesia, y en el punto la trituradora (Quebrada La Picha), antes de la confluencia con el Rio Oro. De igual forma, en la Batea (Quebrada Angula) después del vertimiento del municipio de Lebrija se determinó calidad pésima.

- 17. Las evaluaciones integrales del recurso hídrico superficial reportan valores de media criticidad para las microcuencas El Aburrido, Surata Bajo, Rio Tona, Rio Hato, Río Frio, Oro Alto y Oro Medio. De la microcuenca Rio Tona se abastece en gran porcentaje el sistema de acueducto del área metropolitana de Bucaramanga, por lo que el Índice del Uso del Agua reporta alta presión de la demanda con respecto a la oferta hídrica, con valores altos del Índice de alteración Potencial de la Calidad del Agua. En la cuenca del Rio Tona, el Acueducto Metropolitano de Bucaramanga S.A. E.S.P, construyó un embalse que mejora la capacidad de regulación.
- 18. La calificación de media criticidad para Rio Hato se debe a que es una cuenca con buena capacidad de retención hídrica pero una presión alta de la demanda con respecto a la oferta hídrica disponible producto del desarrollo urbanístico de la zona. Los valores del IACAL para la microcuenca Nivel III El Hato son de alta criticidad sobre todo por el desarrollo industrial y urbanístico de la zona baja de la microcuenca.
- 19. En la microcuenca Nivel III Rio Frio, segunda fuente de abastecimiento para el acueducto metropolitano de Bucaramanga, los valores de media criticidad se deben a valores altos de IUA y principalmente a la calidad de las aguas en la parte baja de la cuenca. Para mejorar este último indicador EMPAS S.A. ESP, responsable de la operación de la Planta de Tratamiento de Aguas Residuales de Río Frio, ha iniciado el mejoramiento y optimización de la planta, lo que trae como consecuencia mejores índices de evaluación integral del recurso hídrico.
- 20. Los valores de la evaluación integral del recurso hídrico superficial para el resto de microcuencas se ubican en niveles bajos de criticidad que en la Figura 64 se indican en color verde.

9.1 Acciones

En el marco conceptual de la ERA, el Índice de alteración de la calidad IACAL, está relacionado con las cargas contaminantes Demanda Bioquímica de Oxigeno y Solidos suspendidos totales (DBO5 y SST). Así mismo, en las metas globales del Instrumento económico Tasa Retributiva, se han determinan estos agentes contaminantes, que pueden afectar el comportamiento del mencionado índice. Por esta razón, la información de la Tasa Retributiva se configura en la base para la evaluación de la presión causada por estas cargas puntuales en la cuenca. Aunque las metas globales solo están relacionadas a DBO5 y SST, es importante tener en cuenta que las caracterizaciones de los vertimientos, pueden contener la presencia de cargas para las otras variables que conforman el IACAL.

La aplicación del instrumento económico Tasa Retributiva, es fundamental para reducir la presión por contaminación, ya que debe ajustar las metas de cargas contaminantes para DBO y SST, para el próximo quinquenio, con el fin de disminuir la presión es decir el Índice de Alteración Potencial de Calidad del Agua (IACAL), que se encuentra Muy Alto, para las microcuencas Nivel III, La Angula, Las Lajas, El Aburrido, La Honda, Rio de Oro Bajo, Rio de Oro Medio y Rio de Oro Alto, Rio Hato, Rio Frio y Quebrada Samaca en la condición hidrológica de año normal.

De la misma forma, en condiciones de año hidrológico seco los indicadores de IACAL para DBO, SST, sufren un deterioro en su calificación debido a los caudales muy bajos por efectos de dilución.

- Precisar el uso específico del agua cuando se otorguen concesiones para así tener una demanda real del uso de este recurso en la cuenca ya que solamente se cuenta con uso doméstico y otros usos.
- Implementar programas de ahorro y uso eficiente del agua donde el uso del agua en las zonas donde el uso es muy alto y alto para tener un manejo integral del recurso hídrico en la cuenca alto Lebrija.

La CDMB, como entidad responsable de la protección de los recursos naturales, le corresponde implementar la red de calidad y cantidad de aguas subterráneas, con el fin de definir el tipo predominante de aguas, concentración de iones disueltos, composición química con respecto a la profundidad en la jurisdicción de la CDMB teniendo en cuenta las subcuencas Hidrogeológicas.

BIBLIOGRAFIA

Colombia, Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM. (2013). Lineamientos conceptuales y metodológicos para la Evaluación Regional del Agua (ERA). Bogotá D.C.

Colombia, Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM (2010). Estudio Nacional del Agua (ENA). Bogotá D.C.

Colombia, Corporación Autónoma Regional para la defensa de la meseta de Bucaramanga – CDMB, (2015). POMCA Cuenca Alto Lebrija.

Colombia Política Nacional para la Gestión Integral del Recurso Hídrico- MADS 2010-2022, Bogotá D.C.

Corporación Autónoma Regional para la Defensa de la Meseta de Bucaramanga – CDMB, (2016). Plan de Acción Trienal 2016-2019. Bucaramanga

Colombia, Corporación Autónoma Regional Cundinamarca-CAR, 2009, Evaluación Regional del Agua Cuenca Alta río Bogotá, Bogotá D.C.

Arias, A. 2017, Apoyo en el análisis de la información hidroclimatológica para la generación de indicadores del estudio regional del agua del área de jurisdicción de la

corporación autónoma regional para la defensa de la meseta de Bucaramanga. Trabajo de grado. Universidad Pontificia Bolivariana. Facultad de Ingeniería Civil. Bucaramanga.

Corporación Autónoma Regional para la Defensa de la Meseta de Bucaramanga – CDMB, Cartografía

LISTADO DE TABLAS

Tabla 1. Indicadores hídricos, ENA 2010	18
Tabla 2. Subcuencas o Nivel II de unidades hidrográficas	28
Tabla 3. Microcuencas, Nivel III de la subcuenca Nivel II Lebrija Alto	29
Tabla 4 Microcuenca, Nivel III de la subcuenca Nivel II Rio de Oro	30
Tabla 5: Microcuencas, Nivel III de la subcuenca Nivel II Rio Surata	30
Tabla 6. Microcuencas, Nivel III de la subcuenca Nivel II Rio Negro	31
Tabla 7. Microcuencas, Nivel III de la subcuenca Nivel II Rio Salamaga	31
Tabla 8. Morfometría general – Pendientes POMCA Lebrija Alto -2015	32
Tabla 9. Estaciones en la zona de estudio Unión Temporal POMCA Río Lebrija Alto 2015	35
Tabla 10. Categorías índices de Aridez	51
Tabla 11. Categorías del índice de retención y regulación hídrica (IRH)	52
Tabla 12. Rangos y categorías del índice de uso del agua (IUA)	53
Tabla 13. Categorías del Índice de Vulnerabilidad al Desabastecimiento	54
Tabla 14. Caracterización morfometríca y fisiográfica de las subcuencas Nivel II	62
Tabla 15. Estaciones representativas en la Cuenca alto Lebrija	63
Tabla 16. Grupos de estaciones	64
Tabla 17. Precipitación (mm) media mensual multianual de la cuenca Alto Lebrija	67
Tabla 18. Precipitación (mm) mínima mensual multianual de la cuenca Alto Lebrija	69
Tabla 19. Precipitación (mm) máxima mensual multianual de la cuenca Alto Lebrija	71
Tabla 20. Precipitación máxima en 24 horas [mm/día]	74
Tabla 21. Precipitación máxima en 24 horas [mm/día]	75
Tabla 22. Precipitación Máxima en 24 horas para diferentes periodos de retorno [mmm/día]	78
Tabla 23. Valores coeficientes curvas sintéticas.	79
Tabla 24. Precipitación máxima en 24 h Tr, 25,50 y 100	82
Tabla 25. Resultados del índice de calor mensual	108

Tabla 26. Resultados índices de calor anual (I y a)	109
Tabla 27. Resultados de ETP sin corregir	109
Tabla 28. Resultados de ETP corregidos	110
Tabla 29. Resultados del cálculo de la ETR	114
Tabla 30. Balance hídrico estación: ISER PAMPLONA	117
Tabla 31. Balance hídrico estación: VILLA DE LEYVA	118
Tabla 32. Balance hídrico estación: VIVERO SURATA	119
Tabla 33. Balance hídrico estación: LLANOGRANDE	119
Tabla 34. Balance hídrico estación: PALONEGRO	120
Tabla 35. Balance hídrico estación: CACHIRI	121
Tabla 36. Balance hídrico estación: SILOS	122
Tabla 37. Balance hídrico estación: BERLIN	122
Tabla 38. Balance hídrico estación: ZAPATOCA	123
Tabla 39. Oferta hídrica total m3/s (Año normal)	125
Tabla 40. Caudal ambiental m3/s (Año normal)	127
Tabla 41. Oferta hídrica disponible m3/s (Año normal)	129
Tabla 42. Rendimiento hídrico L/S/Km2 (Año normal)	131
Tabla 43. Demanda cuenca rio Lebrija	137
Tabla 44. Índice de aridez Cuenca Alto Lebrija	138
Tabla 45. Ecuación Curva de Duración de Caudales	142
Tabla 46. IRH estaciones Alto Lebrija	144
Tabla 47. Prestación (P) y evapotranspiración real ETR Apto Palonegro	145
Tabla 48. Prestación (P) y evapotranspiración real ETR Vivero Surata	147
Tabla 49. Prestación (P) y evapotranspiración real ETR Llano Grande	148
Tabla 50. Prestación (P) y evapotranspiración real ETR Berlín	150
Tabla 51. Prestación (P) y evapotranspiración real ETR Cachiri	151
Tabla 52. Oferta hídrica total m3/s microcuenca Lebrija Alto Directos	152
Tabla 53. Oferta hídrica total m3/s microcuenca Quebrada La Angula	153
Tabla 54. Oferta hídrica total m3/s microcuenca Quebrada Lajas	154
Tabla 55. Oferta hídrica total m3/s microcuenca Quebrada Aburrido	155
Tabla 56. Oferta hídrica total m3/s microcuenca Quebrada La Honda	155
Tabla 57. Oferta hídrica total m3/s microcuenca Rio de Oro Bajo	156
Tabla 58. Oferta hídrica total m3/s microcuenca Rio de Oro Medio	157
Tabla 59. Oferta hídrica total m3/s microcuenca Rio de Oro Alto	158
Tabla 60. Oferta hídrica total m3/s microcuenca Rio Hato	158
Tabla 61. Oferta hídrica total m3/s microcuenca Rio Frio	159
Tabla 62. Oferta hídrica total m3/s microcuenca Rio Tona	160
Tabla 63. Oferta hídrica total m3/s microcuenca Rio Charta	161
Tabla 64. Oferta hídrica total m3/s microcuenca Rio Vetas	161
Tabla 65. Oferta hídrica total m3/s microcuenca Rio Surata Alto	162
Tabla 66. Oferta hídrica total m3/s microcuenca Rio Surata Bajo	163

Tabla 67. Oferta hídrica total m3/s microcuenca Rio Negro	164
Tabla 68. Oferta hídrica total m3/s microcuenca Quebrada Santacruz	164
Tabla 69. Oferta hídrica total m3/s microcuenca Quebrada Samaca	165
Tabla 70. Oferta hídrica total m3/s microcuenca Quebrada Salamaga	165
Tabla 71. Oferta hídrica total m3/s microcuenca Quebrada Silgara	166
Tabla 72. Ecuaciones para las curvas de duración de caudales en las microcuencas	167
Tabla 73. Índice de regulación hídrica	178
Tabla 74. IUA Condición hidrológica (Año normal) Cuenca Alto Lebrija	180
Tabla 75. IVH Cuenca Alto Lebrija. Condición hidrológica (Año normal)	182
Tabla 76. Índice Morfométrico.	185
Tabla 77. Categorías índices Morfométrico de torrencialidad.	186
Tabla 78. Índice de variabilidad.	188
Tabla 79. Categorías IVET.	190
Tabla 80. Rango de valores que pueden tomar el IACAL.	192
Tabla 81. Rangos de Valores que puede tomar el IACAL DBO.	193
Tabla 82. Rangos de Valores que puede tomar el IACAL DQO.	193
Tabla 83. Rangos de Valores que puede tomar el IACAL SST.	194
Tabla 84. Rangos de valores que puede tomar el IACALNT	194
Tabla 85. Rangos de Valores que puede tomar el IACALPT.	194
Tabla 86. Caudal de oferta hídrica total en m3/s para año normal.	195
Tabla 87. Rangos de Valores del IACAL DBO	196
Tabla 88. Rangos de Valores Del IACAL DQO-	197
Tabla 89. Rangos de Valores Del IACAL SST	197
Tabla 90. Rangos de Valores Del IACAL NT	198
Tabla 91. Rangos de Valores Del IACAL PT	199
Tabla 92. Rangos de valores del IACAL. Total de la cuenca media normal	199
Tabla 93. Descriptores de la Calidad del ICA	204
Tabla 94. Índice de Calidad promedio	206
Tabla 95. Categoría de criticidad integral	208
Tabla 96 Evaluación integral de la Cuenca Alto Lebrija	209

LISTADO DE GRÁFICAS

Gráfica 1. Área (Ha) municipios en la cuenca Alto Lebrija.	27
Gráfica 2. Porcentaje de participación de los municipios en la cuenca Alto Lebrija.	27
Gráfica 3. Bosquejo del balance hídrico	42
Gráfica 4. Precipitación máxima anual	76
Gráfica 5. Histograma Precipitación valores extremos (mm).	76
Gráfica 6. Análisis de frecuencia de precipitación máxima en 24 horas Estación Galicia.	77
Gráfica 7. Curva IDF sintéticas para estación Llano grande.	80
Gráfica 8. Histograma Temperatura media Mensual Multianual (°C).	85
Gráfica 9. Histograma Temperatura media Mensual Multianual (°C	85
Gráfica 10. Histograma Temperatura media Anual (°C).	86
Gráfica 11. Histograma Temperatura Mínima Anual (°C	87
Gráfica 12. Histograma Temperatura Mínima Anual (oC	87
Gráfica 13. Temperatura mínima Mensual Multianual.	89
Gráfica 14. Temperatura mínima Mensual Multianual.	89
Gráfica 15. Histograma Temp Máxima Anual (oC).	90
Gráfica 16. Histograma Temp Máxima Anual (oC).	90
Gráfica 17. Temperatura máxima mensual multianual.	91
Gráfica 18. Temperatura máxima mensual multianual.	91
Gráfica 19. Histograma humedad relativa promedio mensual multianual	96
Gráfica 20. Histograma humedad relativa promedio mensual multianual.	96
Gráfica 21. Diagrama lineal de evaporación promedio mensual	100
Gráfica 22. Diagrama lineal de evaporación promedio mensual.	100
Gráfica 23. Brillo solar promedio mensual.	104
Gráfica 24. Brillo solar promedio mensual.	104
Gráfica 25. Variación temporal de parámetros del balance hídrico estación. ISER PAMPLONA.	117
Gráfica 26. Variación temporal de parámetros del balance hídrico estación. VILLALEYVA.	118
Gráfica 27. Variación temporal de parámetros del balance hídrico estación. VIVERO SURATA.	119
Gráfica 28. Variación temporal de parámetros del balance hídrico estación. LLANOGRANDE.	120
Gráfica 29. Variación temporal de parámetros del balance hídrico estación PALONEGRO.	120
Gráfica 30. Variación temporal de parámetros del balance hídrico estación CACHIRI.	121
Gráfica 31. Variación temporal de parámetros del balance hídrico estación SILOS.	122
Gráfica 32. Variación temporal de parámetros del balance hídrico estación BERLIN.	122
Gráfica 33. Variación temporal de parámetros del balance hídrico estación ZAPATOCA	123
Gráfica 34. Curva de duración de caudales Puente Panagas 23197270	142
Gráfica 35. Curva de duración de caudales Puente Sardinas 23197130	143
Gráfica 36. Curva de duración de caudales El Conquistador 23197430	143
Gráfica 37. Curva de duración de caudales Lebrija Alto Directos	168
Gráfica 38. Curva de duración de caudales Quebrada La Angula	168
Gráfica 39. Curva de duración de caudales Quebrada Lajas	169

Gráfica 40. Curva de duración de caudales Quebrada Aburrido	169
Gráfica 41. Curva de duración de caudales Quebrada La Honda	170
Gráfica 42. Curva de duración de caudales Rio de Oro Bajo	170
Gráfica 43. Curva de duración de caudales Rio de Oro Medio	171
Gráfica 44. Curva de duración de caudales Rio de Oro Alto	171
Gráfica 45. Curva de duración de caudales Rio Hato	172
Gráfica 46. Curva de duración de caudales Rio Frio	172
Gráfica 47. Curva de duración de caudales Rio Tona	173
Gráfica 48. Curva de duración de caudales Rio Charta	173
Gráfica 49. Curva de duración de caudales Rio Vetas	174
Gráfica 50. Curva de duración de caudales Rio Suratá Alto	174
Gráfica 51. Curva de duración de caudales Rio Suratá Bajo	175
Gráfica 52. Curva de duración de caudales Rio Negro Bajo	175
Gráfica 53. Curva de duración de caudales Quebrada Santacruz	176
Gráfica 54. Curva de duración de caudales Quebrada Samaca	176
Gráfica 55. Curva de duración de caudales Quebrada Salamaga	177
Gráfica 56. Curva de duración de caudales Quebrada Silgara	177
Gráfica 57. Representación circular del IACAL total de la cuenca	202

LISTADO DE FIGURAS

Figura 1. Niveles de planificación hidrográfica nacional MADS. 2010	12
Figura 2 Ciclo Hidrológico- Unesco 2006.	16
Figura 3. Sistema de indicadores Hídricos Regionales.	19
Figura 4. Marco metodológico para la evaluación del agua ERA.	21
Figura 5. Localización Cuenca Alto Lebrija	25
Figura 6. Ubicación de la Cuenca Alto Lebrija	26
Figura 7. Municipios que conforman la cuenca Alto Lebrija.	26
Figura 8. Mapa de hidrografía (subcuencas Nivel II) POMCA Cuenca Alto Lebrija.	28
Figura 9. Microcuencas Nivel III de la Cuenca Nivel I Alto Lebrija	31
Figura 10. Mapa de Pendientes POMCA Rio Lebrija Alto -2015.	33
Figura 11. Estaciones Cercanas cuenca Alto Lebrija	35
Figura 12. Estaciones Hidrográficas.	36
Figura 13. Procedimiento para la evaluación de la oferta hídrica superficial en las regiones. ERA 2013.	57
Figura 14. Precipitación promedio mensual.	66
Figura 15. Precipitación mínima mensual.	68
Figura 16. Precipitación máxima mensual.	70
Figura 17. Precipitación medio mensual enero a junio.	72
Figura 18. Precipitación medio mensual julio a diciembre.	73
Figura 19. Mapa división de regiones para Colombia	79
Figura 20. Precipitación máxima en 24 horas Tr 2.33 cuenca Rio Alto Lebrija.	81
Figura 21. Precipitación máxima en 24 horas Tr 25 cuenca Rio Alto Lebrija.	82
Figura 22 Precipitación máxima en 24 horas Tr 50 cuenca Rio Alto Lebrija.	83
Figura 23. Precipitación máxima en 24 horas. Tr 100 cuenca rio Alto Lebrija.	84
Figura 24. Temperatura media mensual cuenca rio Alto Lebrija.	86
Figura 25. Temperatura mínima mensual cuenca rio Alto Lebrija.	88
Figura 26. Temperatura máxima mensual cuenca Alto Lebrija.	92
Figura 27. Temperatura media mensual meses enero a junio cuenca río Alto Lebrija.	93
Figura 28. Temperatura media mensual meses julio a diciembre cuenca rio Alto Lebrija.	94
Figura 29. Humedad relativa media mensual cuenca rio Alto Lebrija	97
Figura 30. Humedad relativa máxima mensual cuenca rio Alto Lebrija.	98
Figura 31. Humedad relativa mínima mensual cuenca rio Alto Lebrija.	99
Figura 32. Evaporación media mensual cuenca rio Alto Lebrija.	101
Figura 33. Evaporación máxima mensual cuenca rio Alto Lebrija.	102
Figura 34. Evaporación mínima mensual cuenca rio Alto Lebrija.	103
Figura 35. Mapa brillo solar promedio mensual cuenca rio Alto Lebrija.	105
Figura 36. Mapa brillo solar máximo mensual cuenca rio Alto Lebrija.	106
Figura 37. Mapa brillo solar mínimo mensual cuenca rio Alto Lebrija.	107

Figura 38. ETP mensual cuenca rio Alto Lebrija.	111
Figura 39. ETP mensual (enero-junio) cuenca rio Alto Lebrija.	112
Figura 40. ETP mensual (julio-diciembre) cuenca rio Alto Lebrija.	113
Figura 41. ETR anual Cuenca Rio Alto Lebrija.	114
Figura 42. ETR mensual (enero – junio) cuenca rio Alto Lebrija.	115
Figura 43. ETR mensual (Julio – Diciembre) cuenca rio Alto Lebrija.	116
Figura 44. Balance hídrico de largo plazo mm/año	124
Figura 45. Oferta hídrica total m³/s (Año normal)	126
Figura 46. Caudal ambiental cuenca alta del rio Lebrija (Año medio)	128
Figura 47. Oferta hídrica total disponible (Año normal)	130
Figura 48. Rendimiento hídrico anual cuenca alta del rio Lebrija	132
Figura 49. Rendimiento hídrico mensual año normal (enero-junio) cuenca alta del rio Lebrija	133
Figura 50. Rendimiento hídrico mensual año normal (julio-diciembre) cuenca alta del rio Lebrija	134
Figura 51. Demanda hídrica Cuenca Alta del rio Lebrija	137
Figura 52. Índice de aridez anual Cuenca Alto Lebrija	139
Figura 53. Índice de aridez mensual (enero – junio) Cuenca rio Alto Lebrija	140
Figura 54. Índice de aridez mensual (julio-diciembre) Cuenca rio Alto Lebrija	141
Figura 55. Índice de regulación hídrica IRH Cuenca Alta Rio Lebrija	179
Figura 56. Índice de uso de agua Cuenca alta del rio Lebrija. Condición hidrológica (Año normal)	181
Figura 57. Índice de vulnerabilidad por desabastecimiento hídrico. Cuenca Alto Lebrija	183
Figura 58. Índice morfométrico para la Cuenca Alto Lebrija.	187
Figura 59. Categorización del índice de variabilidad.	189
Figura 60. Índice de vulnerabilidad a eventos torrenciales (IVET).	191
Figura 61. Gráfica del IACAL total de la cuenca.	200
Figura 62. Puntos de Monitoreo ICA	203
Figura 63. Comportamiento promedio multianual del ICA en la cuenca por punto de monitoreo	206
Figura 64. Evaluación integral ERA cuenca Alto Lebrija	210